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H I G H L I G H T S

• The review paper covers integration of artificial intelligence (AI) with various renewable energy sources (RES), including biomass, solar, algae power, geothermal, 
and wind.

• Exploration of AI techniques, including machine learning (ML) and deep learning (DL), for improving green hydrogen production (GH2).
• Identification of gaps in existing research on AI-enabled hydrogen production from algae, ocean, hydroelectric, and tidal energy sources. Continued research, 

collaboration, and investment are crucial for overcoming challenges and fully harnessing AI-enabled GH2 production.
• Addressing the importance of water management in GH2, especially in arid regions, and AI’s potential solutions.
• AI methods and optimisation algorithms show promise in enhancing GH2.
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A B S T R A C T

Hydrogen possesses the ability to produce energy with minimal greenhouse gas emissions when sustainably 
produced, making it a promising renewable energy carrier. Moreover, recent advancements in Artificial Intel-
ligence (AI) can further enhance cleaner hydrogen production in a more optimised way. The main objective of 
this review paper is to comprehensively examine the current state-of-the-art in the integration of AI techniques 
with Renewable Energy Sources (RES), such as biomass, solar, algae power, geothermal, and wind to advance 
various hydrogen production methods, including electrolysis, biological, and photovoltaic processes. Further-
more, we aim to explore how AI optimisation can enhance sustainability, reliability, and commercial viability of 
Green Hydrogen (GH2) systems. These processes are crucial for reducing greenhouse gas emissions and meet the 
world’s growing energy needs. The integration of RES with hydrogen production technologies has been recog-
nised as a key strategy to attain a sustainable and environmentally friendly energy future, and the incorporation 
of AI can optimise efficiency and cost-effectiveness. This review found that there is a growing interest in the 
development of AI techniques to optimise GH2 production. While most of the studies focus on utilising wind and 
solar energy sources, this review found minimal existing research applying AI to GH2 production from algae, 
ocean, intermittency, and hybrid RES. Moreover, no works exploring AI to optimise GH2 production from sources 
like tidal and hydropower were found. Thus, prioritising AI-enabled system development to integrate and 
optimise these resources for GH2 production can help progress renewable generation capabilities towards a more 
sustainable, cleaner, carbon-free future for industry, transport, and societal sectors. Further extensive research is 
essential to fully harness the promise of AI in transforming diverse RES for clean hydrogen.
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1. Introduction

Urbanisation and a growing human population have significantly 
heightened global energy needs, leading to environmental issues such as 
ecosystem degradation, acid rain, air pollution, global warming, and 
energy resource depletion. These concerns make it imperative to 
investigate renewable resource-based alternative energy sources. The 
integration of RES, such as solar, wind, biomass, and geothermal, with 
AI techniques has led to significant advancements in hydrogen pro-
duction. These advancements have not only addressed the challenges 
associated with fluctuating renewable energy production but also 
facilitated efficient and sustainable hydrogen generation to meet the 
growing demand for clean fuel alternatives. By harnessing the power of 
AI, renewables can be optimised for hydrogen production, leading to 
increased efficiency and reliability in the transition towards a greener 
future [81]. AI’s role extends significantly to renewable energy, 
particularly in optimising electrolysis processes for hydrogen production 
[1]. Through real-time monitoring, adaptive control strategies, and 
predictive maintenance, these AI-driven optimisations contribute to 
heightened efficiency and cost-effectiveness in hydrogen production. 
The potential of AI-driven frameworks improves energy systems, control 
mechanisms, and automation, ultimately supporting a sustainable en-
ergy transition [2]. Researchers and engineers analyse, and process 
massive amounts of data using AI to find similarities and optimise en-
ergy production processes, increasing overall efficiency and lowering 
hydrogen production costs. A combination of density functional theory 
calculations and Machine Learning (ML) algorithms such as Support 
Vector Regression (SVR), Gradient Boosting (GB), Random Forest (RF), 
AdaBoost, Multi-layer Perceptron (MLP), and Ridge Regression have 
demonstrated significant advancements in optimising hydrogen evolu-
tion reaction catalysts for enhanced hydrogen production efficiency [3]. 

The symbiotic relationship between AI and RES, as exemplified by 
innovative technologies, facilitates advancements across the entire 
hydrogen production life cycle, encompassing production, distribution, 
and utilisation [4]. These advancements align with the principles of a 
circular economy and contribute to developing comprehensive policy 
frameworks that address evolving energy demands and technological 
advancements [5]. Despite these developments, the integration of RES 
with AI still encounters challenges related to water scarcity and the need 
for pure water in electrolysis processes, particularly in arid regions [6]. 
However, AI technologies continue to encourage the transition to a more 
sustainable and decarbonised energy system while enabling the 
renewable energy industry to grow. This integration not only enhances 
the overall efficiency and reliability of hydrogen production but also 
accelerates the transition towards a sustainable and decarbonised en-
ergy system.

There are several clean and sustainable sources that can be used to 
produce hydrogen through electrolysis, as illustrated on the left side of 
Fig. 1. Solar panels directly generate electric energy, while wind tur-
bines and hydroelectric dams use rotational generators, geothermal 
produces electric energy by splitting water (H2O) into hydrogen (H2) 
and oxygen (O2), and biomass can be used to generate hydrogen through 
gasification, feedstock, etc. To generate hydrogen, electrolysers simply 
need water and electricity. The resulting hydrogen can then be used for 
various applications, as shown on the right side of the figure. Fuel cells 
can convert the hydrogen back into electric energy to power trans-
portation. Hydrogen is also used directly in industrial applications or 
injected into natural gas pipelines. Additionally, hydrogen provides a 
method to store energy from renewable sources that are intermittent 
such as solar and wind power. Therefore, GH2 represents a clean and 
sustainable energy carrier that can facilitate the transition to a deca-
rbonised energy system. AI can also help address the challenges of 

Fig. 1. Integration of renewable energy and AI for hydrogen production.
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intermittency and storage by optimising the integration of RES with GH2 
production systems. This can be achieved by predicting weather patterns 
and adjusting the production of hydrogen accordingly. In continuation 
to the production of hydrogen in 2030, a solar-driven steam-auto-
thermal hybrid reforming system was proposed to capture the carbon 
emissions generated during hydrogen extraction [7]. The forecast 
hydrogen demand is shown in Fig. 2, for 2030 and 2050. The demand of 
hydrogen is increasing fivefold for China reaching 200 MmT (million 
metric tons), whereas for North America and Europe it increases from 25 
and 20 to 95. For Japan and Korea, it rises from 10 to 35 MmT, and for 
the rest of the world it reaches 235 MmT (McKinsey & Company @ 
Statista 2023).

Large volumes of hydrogen are produced using fossil fuels; however, 
these processes are not sustainable due to their negative environmental 
effects [8]. The review explored various hydrogen production methods, 
evaluating both renewable and non-renewable sources, with a focus on 
costs, environmental impact, and technological advancements. Pre-
dominantly, traditional methods rely on natural gas and coal, which 
pose considerable environmental challenges. In contrast, renewable- 
based approaches like water electrolysis and thermochemical cycles 
powered by clean energy sources such as wind, solar, and nuclear pre-
sent promising alternatives. The studies emphasise the need to transition 
towards these sustainable methods while adopting innovations like 
Proton Exchange Membrane (PEM) electrolysis, biomass gasification, 
and microbial hydrogen production to achieve long-term sustainability 
and reduce environmental impacts. Increasing global population, eco-
nomic growth, and technological progress have driven a rise in primary 
energy consumption, which remains heavily reliant on fossil fuels. 
Although RES currently contribute only a small fraction to GH2, ongoing 
research has been focused on generating environmentally friendly and 
pollution-free hydrogen by integrating AI with these sources.

Achieving truly sustainable hydrogen production demands requires a 
careful balance between efficiency and cost-effectiveness. As the global 
energy landscape shifts towards cleaner alternatives, researchers and 
stakeholders are actively exploring and evaluating diverse production 
methods to find the optimal pathway that aligns with environmental, 
economic, and operational priorities. Selecting the most suitable 
hydrogen production approach requires a thorough analysis of effi-
ciency and cost trade-offs to ensure a viable and sustainable energy 
future. This intricate relationship is illustrated through a profile anal-
ysis, as depicted in Fig. 3. Steam Reforming (SR) boasts an impressive 85 
% efficiency, substantially higher than Electrolysis and Dark Fermen-
tation (DF) which each have 80 % efficiency. However, Photo Fermen-
tation (PF) and Photolysis exhibit remarkably low efficiencies of just 0.1 

% and 0.06 %, respectively. In terms of cost, SR is at $2.27/kg, followed 
closely by Partial Oxidation (PO) and Autothermal Reforming (AR) at 
$1.48/kg. Electrolysis remains by far the most expensive option at 
$10.3/kg. With these efficiency and cost profiles in mind, stakeholders 
face a critical decision whether to prioritise the high efficiency of SR or 
the cost-effectiveness of methods like PO, AR, and Gasification (G). 
Striking the right balance will be key to maximising the viability and 
potential of hydrogen production.

Moreover, the International Energy Agency data on global energy 
investments from 2015 to 2023, presented in Fig. 4, reveals increasing 
capital allocation towards diversifying the world’s energy sources. Total 
investments grew steadily from $2392 billion in 2015 to $2791 billion in 
2023, representing a growing focus on energy diversity.

Therefore, the overall objective of this work is to provide a 
comprehensive analysis of the current state-of-the-art in the integration 
and development of AI techniques for optimising GH2 production 
methods. We have outlined the following main objectives of our litera-
ture review: 

1. To analyse the current state-of-the-art integration of AI techniques 
with various RES for optimising GH2 production methods, including 
electrolysis, biological, and photovoltaic processes.

2. To identify the current gaps in the existing research literature related 
to the application of AI in hydrogen production from algae, ocean, 
hydroelectric, and tidal energy sources, and highlight the need for 
prioritising AI-enabled systems for these underutilised resources.

3. To review the role of AI algorithms in improving electrolysis pro-
cesses and their potential to develop adaptive control strategies for 
greater efficiency and cost-effectiveness in hydrogen production.

4. To analyse the critical importance of addressing water scarcity 
challenges for hydrogen production from water electrolysis, with a 
particular focus on the pressing water issues faced by arid regions.

This literature review paper is structured as follows: In Section 2 we 
provide a background of theoretical foundation, and in Section 3 we 
outline the research methodology and highlight the process of search-
ing, focusing on the topic. Section 4 delves into the examination of re-
sults, encompassing efficiency, cost analysis, various electrolysis 
processes for hydrogen production, and methodologies integrating AI 
for GH2 production using RES. Section 5 engages in a discussion of the 
advancements, challenges, and opportunities in hydrogen production. 
Lastly, Section 6 presents the conclusion and offers suggestions for 
further research.

2. Theoretical foundation

2.1. Techniques of hydrogen production incorporating AI techniques

2.1.1. Electrolytic processes
ML techniques have significantly advanced the field of electrolytic 

hydrogen production [10]. Hydrogen can be produced through elec-
trolysis, which utilises electricity to split H2O molecules into H2 and O2. 
In this electrochemical process, H2O is broken down into its basic 
components of H2 and O2 by passing an electric current through it [83]. 
The reaction takes place in an electrolyser which contains a cathode and 
an anode separated by an electrolyte medium. As current passes between 
the electrodes, the H2O molecules are split, resulting in H2 gas collecting 
at the cathode and O2 at the anode. The ML algorithms can precisely 
analyse electrode surface interactions, predicting optimal electrolyte 
compositions and membrane performance with unprecedented accu-
racy. Deep Learning (DL) techniques excel at modelling complex elec-
trochemical reactions, identifying subtle variations in current efficiency, 
and recommending material modifications that enhance hydrogen 
generation. AI-powered predictive models can simulate electrical cur-
rent distributions, voltage losses, and potential degradation mechanisms 
across different electrolyses technologies like PEM and alkaline systems. 

Fig. 2. Forecast hydrogen demand worldwide in 2030 and 2050 (source 
Hydrogen Council, McKinsey & Company @ Statista 2023).

M.A. Baseer et al.                                                                                                                                                                                                                               Applied Energy 383 (2025) 125354 

3 



By integrating advanced ML techniques, AI facilitates more detailed 
understanding of electrolytic hydrogen production, accelerating tech-
nological improvements and supporting the development of more robust 
and efficient electrochemical hydrogen generation systems.

The equations given by Ivy [11] outline basic reactions, with Eq. (1)
representing water decomposition. The subsequent Eqs. (2)–(5) delve 
into electrode reactions within PEM and Alkaline systems. 

H2O→
1
2
O2 +H2 (1) 

In a PEM hydrogen production at cathode and anode, the electrode 
reactions are as follows: 

2H+ +2e− →H2 (2) 

H2O→
1
2
O2 +2H+ +2e− (3) 

In an Alkaline system, the electrode reactions for Hydrogen pro-
duction at Cathode and O2 production at Anode are as follows: 

2H2O+2e− →H2 +2OH− (4) 

2OH− →
1
2
O2 +2H2O+ 2e− (5) 

2.1.2. Photovoltaic processes
The PV industry is increasingly adopting AI techniques to optimise 

and improve various aspects of PV processes. AI techniques have the 
potential to significantly enhance electrolytic hydrogen production by 
improving process efficiency, predicting performance, and optimising 
system parameters. For instance, ML models such as Recurrent Neural 
Network (RNN), XGBoost, and LightGBM have been successfully applied 
to predict and optimise hydrogen production from electrolysis pro-
cesses, demonstrating high predictive accuracy and the ability to iden-
tify optimal configurations [12]. PV processes directly harness solar 
energy to generate hydrogen through photocatalytic water splitting. 
These methods use solar cells or semiconducting materials to absorb 
sunlight and use the energy to break H2O molecules into H2 and O2 [84]. 
Ultimately, PV hydrogen production provides a renewable approach to 
generate H2 gas directly from sunlight and H2O without any carbon 
emissions [13]. The H2 and O2 evolution reactions in a PEM system are 
expressed through Eqs. (6)-(8) for PEM system electrode reaction, 
hydrogen evolution reaction, and oxygen evolution reaction 

Fig. 3. Hydrogen production methods for efficiency and cost [9].

Fig. 4. World energy investment data 2023 (source IEA).
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emphasising the electrochemical aspects of hydrogen production [14]. 

2H2O+ photons→2H2 +O2 (6) 

2H2O+4e− →H2 +2OH− (7) 

4OH− →O2 +2H2O+4e− (8) 

2.1.3. Biological processes
AI techniques, particularly supervised ML algorithms, are trans-

forming biological hydrogen production through sophisticated compu-
tational modelling approaches. ANN emerge as the most dominant 
technique, capable of modelling complex biochemical reactions and 
handling nonlinear biological processes with exceptional precision. By 
integrating Artificial Neural Networks Inference Fuzzy Systems and 
combining Neural Network (NN) capabilities with fuzzy logic, un-
certainties inherent in biological systems are effectively managed. SVM 
provide robust predictive modelling by handling high-dimensional data 
and performing advanced classification and regression tasks. Ensemble 
learning techniques like GB and RF further enhance computational in-
telligence by improving prediction accuracy, reducing model over-
fitting, and generating critical feature importance insights. These 
advanced AI techniques require extensive datasets and offer significant 
advantages over traditional first-principle models, enabling dynamic 
time-invariant and time-variant modelling of microbial metabolic pro-
cesses. These AI approaches are revolutionising our understanding and 
optimisation of biological hydrogen production technologies. Biological 
process employs microorganisms or enzymes for hydrogen production 
through fermentation or biological H2O splitting. In anaerobic condi-
tions, mixed microbial cultures can break down glucose, glucose isomers 
like other hexoses, and polymers such as starch, glycogen, and cellulose 
[15]. This microbial degradation produces hydrogen along with various 
metabolic by-products. Eqs. (9)-(11) introduce acidogenesis reactions 
linking hydrogen yield to metabolic products, showcasing the impor-
tance of metabolic pathways in achieving high hydrogen productivity 
([85], [17,18]). The hydrogen yield can be stoichiometrically correlated 
with the final metabolic products through specific acidogenesis 
reactions: 

C6H12O6 +2H2O→2CH3COOH+2CO2 +4H2 (9) 

C6H12O6→CH3CH2CH2COOH+2CO2 +2H2 (10) 

C6H12O6 +2H2→2CH3CH2COOH+2H2O (11) 

2.2. AI techniques for optimising hydrogen production

2.2.1. Machine learning
AI, particularly ML, has the potential to change hydrogen generation 

from RES. ML can analyse complicated datasets involving renewable 
energy inputs and system performance, imitating human-like learning 
by using methods like logic, deduction, and statistical inference to create 
prediction models [19]. This data-driven strategy increases the effi-
ciency and scalability of hydrogen generation technologies, allowing for 
autonomous decision-making and adaptive responses to changing con-
ditions. The integration of RES such as solar and wind, which are 
fundamentally unpredictable and weather-dependent, can be optimised 
using ML to maximise hydrogen yield. ML models analyse both histor-
ical and real-time data, allowing for better management of energy 
fluctuations and increasing the reliability of hydrogen generation op-
erations. For example, SVMs can be utilised for classification, regression, 
or other tasks; Linear Regression (LR) models can be used to predict 
energy production patterns; and k-Nearest Neighbor (k− NN) can esti-
mate energy outputs by evaluating similar previous conditions, allowing 
for more effective energy supply and demand management [20]. 
Whereas RF classifier is a prominent ensemble method of classification 
used in ML and data science for a wide range of applications [21]. These 

models can autonomously identify and optimise essential factors in 
electrolysis, such as temperature, pressure, and voltage, to increase ef-
ficiency. By continuously learning from operational data, ML systems 
may make real-time adjustments to ensure optimal hydrogen yield with 
minimal energy use. Furthermore, AI’s capacity to integrate heteroge-
neous RES helps to build a more robust and sustainable energy 
ecosystem for hydrogen generation, addressing issues such as variability 
and optimising performance metrics [86].

2.2.2. Artificial neural network
ANN is a form of ML model influenced by the human nervous system 

consisting of neurons and designed to learn and make assessments based 
on data. Fig. 5 depicts a simplified ANN structure that includes an input 
layer, hidden layers, and an output layer. The data is first introduced in 
the input layer, with each neuron representing a distinct aspect of the 
input data. This data is then passed via hidden layers, which use 
mathematical functions and algorithms to detect complicated patterns. 
These layers are essential for learning the correlations in the data and 
are optimised to achieve high predictive accuracy. Various activation 
functions are utilised within these layers to introduce nonlinearity to the 
model, allowing it to learn more complex patterns. The output layer 
produces the outcome based on the learnt patterns, which could be a 
prediction or classification, depending on the objective. [22]. ANNs are 
especially useful for jobs involving big datasets and complicated in-
teractions, such as image recognition, classification, and predictive 
modelling. By carefully choosing training approaches, ANNs may 
effectively mimic the complicated interactions between input factors 
and output results. Furthermore, hybrid systems that combine ANNs and 
optimisation algorithms, such as evolutionary methods, improve 
network efficiency and reduce errors. These advanced models are crit-
ical for forecasting how environmental changes affect hydrogen pro-
duction and making real-time adjustments to maintain maximum 
performance, thereby promoting sustainable resource management. A 
Feed-Forward Neural Network (FFNN) is a similar type of ANN in which 
the connections between the nodes do not form cycles, allowing data to 
flow in only one direction from source to output, making it especially 
helpful for tasks such as pattern recognition and function approximation 
[23].

2.2.3. Deep learning
DL is at the cutting edge of AI technology, providing a specialised 

technique within ML in which models learn to do tasks like classification 
directly from raw data such as audio signals, pictures, or text. This 
method is based on advanced NN designs inspired by the human nervous 
system, which comprise of numerous interconnected layers. The name 
‘deep’ refers to the large number of layers in these networks, generally in 
the hundreds, as opposed to regular NNs, which typically have fewer 

Fig. 5. Basic ANN framework.
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than five layers. These networks are built using an input layer, several 
hidden layers, and an output layer, with each hidden layer processing 
the output of the preceding one. This broad infrastructure is useful for 
complicated applications like facial recognition, language translation, 
speech recognition, and advanced safety features. Unlike standard ML, 
which involves human feature extraction, DL allows networks to learn 
features automatically, improving adaptability and performance [19]. 
As a subset of AI, DL can significantly increase hydrogen production by 
effectively analysing massive and complicated datasets, modelling 
detailed nonlinear relationships, and making real-time predictions. In 
hydrogen production methods such as electrolysis, thermochemical 
processes, or other advanced approaches, DL models such as CNNs and 
RNNs can optimise and drive efficiency. These models use historical and 
real-time data to identify the optimal operational settings, increasing 
hydrogen yield while decreasing energy usage. Furthermore, DL algo-
rithms constantly learn from data, allowing them to adapt to changing 
conditions and automatically modify system parameters, resulting in 
greater production efficiency. In addition, DL improves predictive 
maintenance in hydrogen facilities, increasing dependability by proac-
tively addressing possible issues and reducing failures. RNNs are one of 
the major models utilised in these applications, as they process 
sequential data by storing hidden states containing information from 
prior steps [24]. The advanced subset of RNNs is Long-Short Term 
Memory (LSTM) networks, that use gates and memory cells to handle 
the vanishing gradient problem, making it easier to simulate long-term 
dependencies than simple RNNs [87]. However, the more complicated 
internal framework of LSTM networks makes them more difficult to 
train, necessitating larger computer resources and longer training cycles 
[25]. Gated Recurrent Units (GRUs) are another type of RNN that sim-
plifies the LSTM architecture by reducing the number of gates to 
maintain learning performance while cutting computational cost [26].

3. Methods

The research methods for this study involve a systematic and inter-
disciplinary approach to explore the integration of AI techniques with 
renewables for efficient hydrogen production. The following key steps 
were undertaken to achieve this goal: 

• Conducting an extensive review of academic journals, conference 
proceedings, and relevant publications to understand the current 
state of research in AI-enabled hydrogen production from renewable 
sources.

• Identifying and evaluating various RES to assess their potential for 
hydrogen production. Analysing the characteristics and environ-
mental impact of each source to determine suitability for integration 
with AI.

• Exploring different AI techniques, such as ML and DL algorithms, for 
optimising hydrogen production, investigating the role of AI in 
predicting optimal operating conditions for electrolysers, addressing 
intermittency challenges, and optimising energy generation.

• Examining real-world case studies showcasing successful integration 
of AI with renewable energy for hydrogen production.

• Analysing the impact of AI on electrolysis processes, smart grids, and 
energy management systems.

• Analysing the importance of addressing water scarcity challenges, 
particularly in regions like the Middle East and Western Australia 
(Perth), through the integration of AI. Exploring AI’s role in ensuring 
sustainable hydrogen production in water-scarce environments.

• Suggesting widening the focus of AI techniques for GH2 production 
to harness tidal and hydro energy in conjunction with other RES, 
such as solar and wind.

Through the literature review, the following research questions 
arose:

Q1. What is the current state-of-the art for hydrogen production 

enabled with AI and RES? Numerous studies highlight the integration of 
AI with RES to optimise hydrogen production processes. The method-
ologies involve systematic reviews, economic assessments, and ad-
vancements of AI in renewable energy sectors. These studies collectively 
contribute valuable insights into the current state-of-the art for AI- 
enabled hydrogen production within the realm of RES.

Q2. What challenges arise due to the intermittency of RES, and how 
can AI contribute to overcoming these issues?

AI, utilising ML, will elevate GH2 production by optimising pro-
cesses, ensuring heightened efficiency and sustainable output. This 
technological advancement enables precise resource utilisation, thereby 
contributing to a more effective and environmentally friendly approach 
to hydrogen production.

Q3. In what ways will AI contribute to the generation, distribution, 
and transportation aspects of hydrogen production in conjunction with 
RES?

AI is poised to enhance hydrogen production by playing a pivotal 
role in optimising processes related to generation, distribution, and 
transportation integrated with RES. Through advanced algorithms and 
data-driven insights, AI can improve efficiency and reliability, and 
optimise the utilisation of RES and overall sustainability in various 
stages of hydrogen production.

The filtering analysis presented in Table 1 outlines the meticulous 
process undertaken to refine the literature search. By leveraging the 
extensive databases of Google Scholar and Web of Science, relevant 
research papers exploring the integration of AI in hydrogen production 
methods were identified. This rigorous selection process forms the 
foundation for our comprehensive literature review. By using Boolean 
operators to connect keywords on hydrogen production, renewables, AI, 
and electrolysis, the most relevant articles on this topic were identified.

Fig. 6 provides a visual representation of the comprehensive litera-
ture search conducted across Google Scholar and Web of Science data-
bases to identify relevant research papers focusing on the keywords of AI 
in hydrogen production methods. The initial database search yielded a 
substantial number of 2970 results (Filter 1). Subsequently, through the 
incorporation of specific keywords, the selection was refined to a more 

Table 1 
Filtering analysis of scholarly documents on hydrogen production, artificial in-
telligence, and renewable energy sources using Boolean operators.

Filter Search String and Filtering 
Procedure

Objective Documents

1 “Hydrogen production” 
AND “Artificial 
Intelligence” AND 
“Renewable Energy 
Sources”

To review the comprehensive 
examination for generating 
hydrogen through the 
integration of RES with AI 
techniques

2970

2 “Hydrogen production” 
AND “Artificial 
Intelligence” AND 
“Renewable Energy 
Sources” AND “Artificial 
Neural Network” AND 
“Machine Learning” AND 
“Deep Learning”

To review the latest methods 
for generating hydrogen 
through the integration of AI 
techniques and electrolysers

265

3 Thorough analysis to 
further refine those papers 
aligned to this literature 
review

To identify the approach for 
generating hydrogen through 
the integration of solar, wind, 
algae, biomass, tidal, hydro, 
fuel cell with AI-driven 
optimisation techniques and 
electrolysers including the 
PEM, Solid Oxide Electrolysis 
(SOEL), Solid Oxide 
Electrolysis Cell (SOEC), 
Alkaline Water Electrolysis 
(AWE) and Alkaline 
Electrolysis (AEL) methods 
assessments

62
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manageable set of 265 relevant papers (Filter 2). Further curation was 
performed to exclude 203 papers that did not directly align with the 
specified keywords, culminating in a thorough review of the remaining 
62 papers (Filter 3). This refined selection process guides the direction 
and focus of our comprehensive literature review, ensuring a targeted 
and in-depth exploration of the subject matter.

The analysis revealed limited research on applying AI to some 
hydrogen production methods. As highlighted in the box in the lower 
right corner of the figure, only two papers examined AI for hydrogen 
generation from algae and four from ocean sources. This suggests these 
are promising areas for impactful AI-focused research. Additionally, 
there currently appear to be no studies investigating the potential of AI 
technologies for hydrogen production from hydroelectric and tidal en-
ergy. To progress renewable hydrogen generation, more research could 
prioritise exploring how AI could aid these underexplored production 
approaches including algae, ocean, hydroelectric, and tidal sources.

4. Results

In this section, we present and analyse 62 carefully selected papers 
out of 265, which are detailed in Tables 2 to 10. These papers explore the 
methods, advantages, and disadvantages associated with the production 
of hydrogen facilitated by AI using RES. The results are organised into 
two subsections: one focusing on different processes of electrolysis for 
production of hydrogen with AI using RES, and the other with efficiency 
and cost-effectiveness.

4.1. Hydrogen technologies enhanced by AI using renewable energy 
sources

4.1.1. Solar to hydrogen
Solar energy presents a promising renewable pathway for GH2 pro-

duction through PV electrolysis and photo-electro chemical cells. In PV 
electrolysis, solar panels or concentrated solar power systems capture 
sunlight to generate electricity that splits H2O into H2 and O2, as 
depicted in Fig. 7. Researchers have employed various AI methods to 
enhance hydrogen production from RES. For instance, Su et al. [81] 
utilised ANN for prediction, achieving a R2 of 0.99952 and a relative 

error below 3 %. However, their approach was limited by data de-
pendency and complexity. Meanwhile, Krzos et al. [27] explored how AI 
can improve energy efficiency and optimise GH2, supporting energy 
transformation in Poland. Nonetheless, overcoming infrastructure costs, 
fossil fuel reliance, and workforce impacts remain key challenges to 
scale and adopt these solutions.

In optimisation efforts Assareh and Ghafouri [29] employed the Non- 
Dominated Sorting Genetic Algorithm (NSGA-II) for Multi-Objective 
Optimisation (MOO), providing a trade-off between efficiency and 
costs. However, optimising only for exergy and costs is limited, and 
other objectives like emissions could be considered. The study by Elaziz 
et al. [32] optimised an AI method Random Vector Functional Link 
(RVFL) network and Mayfly Optimisation (MO) algorithm to predict the 
performance of a Photovoltaic/Thermal Collector (PVTC) system that 
produces electricity and hydrogen simultaneously, but the system is 
complex and requires multiple components. Senthilraja et al. [34] 
employed the Adaptive Neuro-Fuzzy Inference System (ANFIS) tech-
nique, which is cost-effective but has limited generalisation. Haider 
et al. [37] explored ML algorithms (Prophet, SARIMAX, SGD) for fore-
casting, achieving high accuracy but facing seasonal dependency chal-
lenges. Finally, the study by Sareen et al. [35] found that the Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise- 
Bidirectional Long Short-Term Memory (CEEMDAN-BiDLSTM) algo-
rithm accurately forecasted GH2 production potential at Fatehgarh 
(0.017 kg/m2) and Bhadla (0.016 kg/m2), outperforming other methods 
with an MAE of 2.987 W/m2, RMSE of 3.129 W/m2, and R2 of 0.988 at 
the Bhadla site. This demonstrates the algorithm’s effectiveness in 
optimising hydrogen production based on solar energy, supporting 
scalable and efficient GH2 generation. The information provided in 
Table 2 outlines the methods, advantages, and disadvantages of solar to 
hydrogen production enabled with AI and electrolysis. 

4.1.2 Wind to Hydrogen

Wind energy offers a viable renewable pathway for sustainable 
hydrogen production, as depicted in Fig. 8, where wind turbines 
generate electricity used to electrolyse water for hydrogen generation. 
In the quest to optimise GH2 from RES, researchers have explored 

Fig. 6. Flow chart of literature searches and screening results.
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various AI techniques. Zhang et al. [40] employed AI optimisation 
techniques, like the Global Dynamic Harmony Search (GDHS), intro-
ducing three improved versions to enhance the efficiency of off-grid 
Hybrid Renewable Energy Systems (HRES) comprising wind turbines, 
fuel cells, and hydrogen storage. Among these, the GDHS-II algorithm 
demonstrated superior convergence speed, robustness, and accuracy 
compared to the original GDHS. The simulation results revealed that 
GDHS-II effectively balances exploration and exploitation, achieving 
better fitness values and system reliability. This optimisation approach 
not only improves the cost-effectiveness and reliability of hybrid systems 

Table 2 
The methods, advantages, and disadvantages of solar to produce hydrogen using 
AI techniques.

S⋅No Authors Methods Advantages Disadvantages

1. [81] The AI methods 
employed for 
prediction 
include Swarm 
Biological 
Algorithms, Non- 
swarm Biological 
Algorithms, 
Physical or 
Chemical 
Heuristic 
Algorithms, and 
Hybrid 
Optimisation 
Algorithms, with 
ANN being 
utilised

Prediction accuracy 
for correlation 
coefficient of 
0.99952 and a 
relative error below 
3 %

Data dependency 
and complexity

2. [27] AI to enhance 
energy efficiency 
and optimise 
hydrogen 
production, and 
by leveraging AI 
to facilitate the 
integration of 
hydrogen 
technologies and 
RES in the Polish 
energy sector

Hydrogen and AI 
can support energy 
transformation in 
Poland

Overcoming 
infrastructure and 
technology costs, 
fossil fuel reliance, 
and workforce 
impacts remain 
key challenges to 
scale and adopt 
these solutions

3. [28] ML algorithms 
(Prophet, 
SARIMAX, SGD, 
LSTM, SVR)

Statistical methods 
are simpler but may 
lack the 
sophistication for 
accurate short-term 
forecasts

Require careful 
tuning and large 
datasets, may not 
capture nonlinear 
relationships

4. [29] NSGA-II 
Algorithm

MOO using NSGA- 
II provides trade-off 
between efficiency 
and costs

Optimising for 
only exergy and 
costs is limited. 
Could consider 
other objectives 
like emissions.

5. [30] DL models such as 
Fully Connected 
Neural Networks 
(FCNs) and CNNs

In capturing 
complex patterns

Data dependency

6. [31] ANN, neuro-fuzzy 
systems, multiple 
regression, and 
DL

Effective in 
modelling, high 
predictivity

Data scarcity 
challenges

7. [32] Optimised AI 
method (RVFL 
network and MO 
algorithm) to 
predict 
performance of 
PVTC

The system 
produces electricity 
and hydrogen 
simultaneously

The system is 
complex and 
requires multiple 
components

8. [33] ANN, Cultural 
Algorithm- 
Artificial Neural 
Network (CA- 
ANN) hybrid 
method

The CA-ANN 
hybrid method 
provided more 
accurate prediction 
of solar PV output 
power compared to 
ANN alone

Solar PV panels 
alone are 
insufficient to 
provide 
uninterrupted 
energy throughout 
the day, 
necessitating 
integration with 
energy storage 
systems (ESS) like 
hydrogen 
production

9. [34] ANFIS technique Cost-effectiveness Limited 
generalisation

10. [35] CEEMDAN- 
BiDLSTM

Accurate prediction 
of GH2 production

Not been validated 
for other hydrogen  

Table 2 (continued )

S⋅No Authors Methods Advantages Disadvantages

production 
methods like 
steam reforming

11. [36] ANN, RNN, DL 
algorithms

Eco-friendly 
framework for 
hydrogen 
production

Optimising and 
refining 
challenges

12. [37] ML algorithms 
(Prophet, 
SARIMAX, SGD)

Forecast accuracy Seasonal 
dependency

13. [38] CNN, Gated 
Recurrent Unit, 
CatBoost, Multi- 
objective grey 
wolf optimiser 
(MOGWO)

Enabling efficient 
prediction and 
performance 
enhancement of the 
system

Requires careful 
tuning of hyper 
parameters and 
model selection 
which is time- 
consuming and 
complex

14. [39] SVM, FbProphet Accurate prediction 
of GH2 production

Challenges in 
algorithm 
assessment and 
selection

Table 3 
The methods, advantages, and disadvantages of wind to hydrogen production 
using AI techniques.

S⋅No Author Methods Advantages Disadvantages

1. [40] AI method like 
GDHS

Improved GDHS 
optimisation

Limited comparison 
metrics

2. [41] AI-enhanced 
MPC, PSO with a 
BPNN

Economic viability Simulation 
environment 
limitation

3. [42] PSO, Tabu 
Search, Simulated 
Annealing, and 
Harmony Search

The total annual 
cost of $18,798.05 
achieved using 
PSO for the PV/ 
wind/FC system 
was the lowest 
among all the 
algorithms 
evaluated

It requires efficiency 
improvements in 
fuel cells and 
electrolysers to 
become competitive

4. [43] Bayesian 
networks

Accurate 
probabilistic 
analysis

Dependency on 
local conditions

5. [44] ANN, SVM 
Metaheuristic 
algorithms, GA, 
PSO, GWO

Cost-effective 
production and 
maintenance

Focused on short- 
term horizons

6. [45] NSGA-II 
optimisation 
algorithm

NSGA is efficient 
approach for 
optimisation

Limited details

7. [46] Levenberg- 
Marquardt 
algorithm

Efficient 
prediction of 
system 
performance.

Limited 
sustainability 
criteria

8. [47] LSTM Provides a reliable 
estimation of the 
site’s potential for 
producing 
hydrogen

The model may not 
be able to generalise 
to new data
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but also shows potential for adaptation to other hybrid energy schemes 
by adjusting key variables. Meanwhile, Chen et al.’s [41] framework 
combines Model Predictive Control (MPC) with AI to enhance power 
management in an integrated wind‑hydrogen-fuel cell network con-
nected to a smart grid. The system employs a hybrid forecasting 
approach using PSO with Back-Propagation Neural Networks (BPNN) to 
predict wind energy generation across 24-h intervals. Power flow opti-
misation is achieved through GA iterations that continuously adjust the 
state space model. The integrated energy infrastructure encompasses 
wind generation facilities, hydrogen and oxygen storage systems, and 
multiple fuel cell units. Implementation of this advanced MPC strategy 
successfully improves supply-demand balance by significantly 
increasing local wind power utilisation from 45 % to 90 %, thereby 
minimising grid power exchanges.

Further exploration by Maleki and Askarzadeh [42] delved into AI 
optimisation techniques and heuristic algorithms, with PSO showing 
promising results, although economic considerations were not fully 
addressed. Similarly, Abisoye et al. [44] combined ANN, SVM, and 
metaheuristic algorithms, enabling cost-effective production and 
maintenance but focusing primarily on short-term horizons. In another 
study, Zhang et al. [45] employed the NSGA-II optimisation algorithm, 
demonstrating its efficiency for optimisation tasks, although the study 
lacked detailed information. In estimating GH2 production, Javaid et al. 
[47] utilised LSTM networks, providing a reliable estimation of a site’s 
potential for producing hydrogen, although the model’s ability to 
generalise to new data was not discussed. Collectively, these studies 

highlight the diverse range of AI techniques and methodologies used to 
enhance GH2 production from RES, each with its own strengths and 
limitations. Table 3 outlines the methods, advantages, and disadvan-
tages of wind to hydrogen production enabled with AI and electrolysis. 

4.1.3 Geothermal to hydrogen

Harnessing the Earth’s natural heat reservoirs in an environmentally 
sustainable manner, by converting geothermal energy into hydrogen, 
offers a compelling avenue for clean and renewable energy solutions. 
This process involves tapping into the Earth’s internal heat through a 
combination of geothermal resources, allowing the production of 
hydrogen without dependence on traditional fossil fuels. Mehrenjani 
et al. [88] integrated ANN with a GA, achieving optimal values for 
hydrogen production rates, although an economic model was not pro-
vided. It presents a geothermal-driven multi-generation system designed 
for power, cooling, and hydrogen production using geothermal energy 
as a heat source and a liquefied natural gas stream as a heat sink. The 
system supplies generated power to a PEM electrolyser for hydrogen 
production and utilises a Claude cycle for the liquefaction process. 
Through a comprehensive energy, exergy, and economic analysis, it was 
determined that the system could produce 106.8 kg/h of hydrogen when 
all available power is utilised. Optimal performance was achieved with a 
hydrogen production rate of 154.95 kg/h, an exergy efficiency of 23.34 
%, and a total cost rate of $291.36/h. Meanwhile, Khosravi and Syri [50] 
proposed a hybrid geothermal-solar system optimised using MLP and 
NN combined with an imperialist competitive algorithm. This system, 

Table 4 
The methods, advantages, and disadvantages of geothermal to produce 
hydrogen using AI techniques.

S⋅No Reference Methods Advantages Disadvantages

1. [88] ANN with GA Achieved 
optimal values 
for hydrogen 
production 
rates

Economic model 
not provided

2. [49] 4E analysis, ML 
coupled with GA 
optimisation

ML method 
reduces 
calculation 
time

LINMAP is not 
explained

3. [50] MLP with imperialist 
competitive 
algorithm

The hybrid 
system is 
suitable for 
remote area 
regions

The method can 
be expensive and 
difficult to 
implement

4. [51] ANN coupled with 
GA

Optimal 
solution, 
hydrogen 
production

Initial cost is high

5 [52] Four different ANN 
models to predict 
(cumulative 
electricity 
generation, injection 
pressure at the well 
bottom, temperature 
of produced water 
and 
average electrical 
power generation) 
and Differential 
Evolution (DE) 
algorithm, FFNN

Surrogate 
model has high 
precision

Complexity 
during training

6. [53] Real-time ANN was 
employed on a Field 
Programmable Gate 
Array (FPGA) and FF- 
ANN

The FPGA- 
based ANN 
model was 
more accurate

It is expensive 
and complex to 
implement

7. [54] Conventional SMOA It is a 
promising 
approach

The system not 
investigated for 
different climatic 
regions

Table 5 
The methods, key findings, and advantages of biomass to produce hydrogen 
using AI techniques.

S⋅No Reference Methods Key findings Advantages

1. [89] ANN model 
developed for two- 
stage biomass with 
Single Hidden Layer, 
FFNN

Accuracy in 
prediction

Time efficient and 
cost-effective

2. [55] ML models (LR, k- 
NN, SVMR) 
Decision Tree 
Regression (DTR))

Gasification 
experiments, 
higher heating 
value, model 
accuracy

Reduced time and 
costs

3. [56] An ANN-based 
model featuring a 
single hidden layer 
with 13 neurons, 
trained using a 
backpropagation 
algorithm

R2 > 0.999 and 
MSE < 0.25

Versatility

4. [80] SVM with ABC 
optimiser

R2 = 0.9464 
and correlation 
= 0.9751

High accuracy

5 [57] ML models (RF, 
ANN, SVM)

R2 = 0.9782 
and hydrogen 
reaction 
efficiency 45.6 
%

High accuracy

6. [58] Palm Kernel Shell 
(PKS) and fuzzy 
logic models

Optimal values 
obtained

Higher H2 and 
syngas 
production

7. [59] ML model, Bayesian 
Regularisation (BR) 
and Scaled 
Conjugate Gradient 
(SCG)

R2 = 0.99 Clean energy 
production

8. [60] ML integrated with 
GA

Enhances 
prediction 
accuracy and 
model 
performance 
using GA

Requires effective 
implementation 
and tuning
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designed to address challenges like low geothermal well temperatures 
and limited operating lifetimes, integrates solar thermal collectors, a 
desalination unit, and a hydrogen storage system to enhance energy 
efficiency, achieving a payback period of around eight years with a 3 % 
interest rate.

For optimal solutions in their integrated geothermal-solar system, 
Balali et al. [51] combined an ANN with a GA to achieve MOO of 
hydrogen production, energy efficiency, and cost rates. The system 
demonstrated the potential to produce GH2 alongside electricity and 
freshwater, although it was noted that the initial investment costs were 
relatively high due to the complexity of the set-up and the inclusion of 
advanced components like parabolic trough solar collectors and ther-
moelectric generators. Additionally, Sohani et al. [54] explored the 
conventional Static Multi-objective Optimization Approach (SMOA) 
method, which demonstrated promising results in optimising electricity, 

heat, hydrogen, and freshwater production in solar-geothermal multi- 
generation systems. However, due to its static nature, SMOA was limited 
in its adaptability to varying operational conditions, as the study did not 
account for dynamic factors or explore its performance across different 
climatic regions. This limitation suggests that while SMOA can achieve 
notable gains in efficiency and production, it may not fully leverage the 
system potential under changing environmental conditions. Fig. 9 il-
lustrates the process flow for utilising geothermal energy to produce 
hydrogen.

These studies collectively demonstrate the diverse range of AI and 
ML techniques employed to enhance hydrogen production from RES, 
each with its unique advantages and limitations, ranging from improved 
optimisation and accuracy to cost considerations and implementation 
complexities. Table 4 shows the methods, advantages, and disadvan-
tages of geothermal to hydrogen production enabled with AI techniques. 

4.1.4 Biomass to hydrogen

In the pursuit of harnessing biomass for hydrogen production, pre-
vious studies have employed various AI and ML techniques. Hannah 
et al. [89] developed an ANN model for a two-stage biomass process, 
demonstrating high accuracy in prediction while being time-efficient 
and cost-effective. The model exhibited high prediction accuracy with 
a correlation coefficient (R2 > 0.99), effectively simulating gas yield and 
composition while reducing the need for extensive experimental trials, 
thereby saving both time and costs. The ANN was able to optimise 
operating conditions, such as temperature and steam-to‑carbon ratio, to 
achieve high hydrogen yields and minimal carbon emissions. Similarly, 
Safarian et al. [56] proposed an ANN model that exhibited outstanding 
performance, with high correlation (R2 > 0.999) and a low mean square 
error (MSE < 0.25), indicating its strong predictive capability and 
adaptability across various biomass feedstocks and operating condi-
tions. By effectively capturing the influence of key parameters such as 
gasifier temperature, steam-to-biomass ratio, and feedstock moisture 
content, this model underscores its potential for optimising biohydrogen 
production and identifying suitable biomass types for efficient 
gasification-based hydrogen production systems. A combined SVM with 
an Artificial Bee Colony (ABC) optimiser studied by García-Nieto et al. 
[80], demonstrated high predictive accuracy in estimating hydrogen gas 
production from biomass. The model achieved an R2 of 0.9464 and a 
correlation of 0.9751, highlighting its effectiveness in capturing the 
complex relationships between physicochemical parameters and 
hydrogen yield.

The investigation by Zhao et al. [57] on supercritical water gasifi-
cation and ML models, achieved an R2 of 0.9782 and a hydrogen reac-
tion efficiency of 45.6 %, further demonstrating the high accuracy of 

Table 6 
The methods, key findings, and advantages of electrolysis to produce hydrogen 
using AI techniques.

S⋅No Reference Methods Key findings Advantages

1. [61] AI (Fuzzy logic 
system, MPC, GA) 
and ML 
(supervised 
learning, 
unsupervised 
learning, semi 
supervised 
learning)

Flexibility, cost- 
effectiveness

Real-time 
adaptability, 
reducing H2 

consumption

2. [62] AI methods (GA, 
PSO, RF, k-NN, 
SVM, and ANN)

Optimisation of 
HRES

Development in 
hydrogen 
economy

3. [63] AI-MOO 
framework

Comprehensive 
coverage of studies 
utilising AI-MOO

Improves 
efficiency

4. [64] AI, DL and GA NN achieved an 
excellent 
correlation 
coefficient of 
0.9998

Cost- 
effectiveness

5. [65] MLP-ANN, ML Model 
demonstrated high 
accuracy

Accurate 
prediction and 
optimisation

6. [66] Hybrid intelligent 
approach, SVR, 
MLP

Performance 
validation, H2 

consumption

Predictive 
accuracy

7. [19] FFNN, LR Accurate results 
with less than 1 % 
error

Efficient fuel 
economy 
assessment

8. [67] ANFIS modelling, 
JO

Improved 
modelling 
accuracy with 
ANFIS

Increased H2 

production

9. [68] GPR and GA 
optimisation.

Power efficiency 
reaches 60 %

ML optimisation 
enhances 
accuracy and 
low LCOE

10. [69] MLP and 
polynomial 
regression 
algorithms

Adaptive- 
predictive control 
system

Accurate 
prediction of the 
H2 flow 
variation

Table 7 
The methods, advantages, and disadvantages of algae to produce hydrogen using 
AI techniques.

S⋅No Reference Methods Advantages Disadvantages

1. [90] AI with GA Cost-effective and 
efficient

High initial 
investment

2. [91] RF, ANN, SVM, 
and regression 
algorithms

ML techniques 
demonstrate 
effectiveness

Model 
overfitting

Table 8 
The methods, advantages, and disadvantages of ocean-to‑hydrogen production 
using AI techniques.

S⋅No Reference Methods Advantages Disadvantages

1. [72] LSTM, 
MLP

Leverages ocean 
wave energy for 
sustainable hydrogen 
generation

Limited information 
provided in the given 
context

2. [92] CNN, RNN AI techniques can 
improve the 
efficiency of RES by 
optimising their 
design, operation, 
and maintenance 
processes

AI techniques in 
renewable energy 
require large 
amounts of high- 
quality data

3. [73] MPC Improved system 
stability

MPC requires 
computational power

4. [74] MLP-ANN, 
SVM, 
ANFIS, GA- 
ANFIS

High accuracy, 
efficient optimisation

Risk of overfitting
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these approaches. Biomass gasification has emerged as a viable path for 
hydrogen generation by exploring studies on feedstocks and catalyst. 
The biomass gasification process for hydrogen production is illustrated 
in Fig. 10. These studies collectively demonstrate the diverse range of AI 
and ML techniques, as well as innovative processes and catalysts, 
employed to enhance hydrogen production from biomass, addressing 
challenges such as tar formation, optimising conversion efficiencies, and 
ensuring cost-effectiveness and environmental sustainability. Table 5
presents the techniques, main discoveries, and benefits associated with 
utilising biomass for hydrogen production.

4.1.2. Hydrogen production through electrolysis
Sustainable hydrogen production can be achieved through electrol-

ysis, a process involving the use of an electric current to split H2O into H2 
and O2. Powered by renewable sources like wind and solar energy, 
electrolysis offers an environmentally friendly method for hydrogen 
production. Distinguished by its lack of greenhouse gas emissions, 
electrolysis is well-suited for large-scale hydrogen generation compared 
to alternative production methods. The recent advancements high-
lighted by Al-Othman et al.’s [62] utilisation of AI methods, include GA, 
PSO, RF, k-NN, SVM, and ANNs for the optimisation of HRES, contrib-
uting to the development of the hydrogen economy. This integration of 
AI not only enhances the efficiency and reliability of energy manage-
ment but also significantly contributes to advancing the hydrogen 
economy by maximising power production and addressing technical, 
economic, and environmental challenges in fuel cell-integrated systems. 
Fig. 11 illustrates a basic schematic of water electrolysis, where the 
water molecules undergo a splitting reaction at the electrodes, produc-
ing hydrogen gas at the cathode and oxygen gas at the anode, driven by 
an external electric current.

Furthermore, the integration of AI-based MOO frameworks, as pro-
posed by Feng et al. [63], offers a flexible approach to optimising 
multiple performance metrics in PEM fuel cells. This integration allows 
for more precise design, control, and operational adjustments, 
addressing both technical and economic challenges while improving 
overall system efficiency. By simultaneously balancing objectives such 
as power output, cost, and thermal management, AI-MOO frameworks 
enhance the adaptability of PEM fuel cell systems under diverse oper-
ating conditions and evolving requirements. Fathy et al. [67] demon-
strated the effectiveness of coupling innovative methodologies like 
ANFIS modelling and the Jellyfish Optimiser (JO), showcasing signifi-
cant strides in improving the accuracy of predictive models and 
enhancing hydrogen production efficiency in microbial electrolysis cells 
(MECs). This integrated strategy not only reduced prediction errors but 

Table 9 
Performance characteristics and cost estimates of different electrolysis methods for hydrogen production.

No Reference Methods Temperature (◦C) Pressure (bar) Efficiency % Cost /kW Current density (A/cm2) Hydrogen production (m3/h)

1. [8] PEM 50–90 15–30 67–84 ~$750 1–2 30 N
AEL 60–90 2–10 62–82 ~$600 0.2–0.5 760 N
SOEL 500–1000 <30 81–86 ~$200 0.3–1 –

2. [75] PEM 50–90 <30 70–80 €250–1700 400
AEL 30–80 <30 73 €370–900 1000
SOEC 900–1000 <30 85–100 €570–730 –

3. [76] AWE 60–90 2–10 62–82 ~$600 0.2–0.5 m –
PEM 50–90 15–30 67–84 ~$750 1–2 –
SOE 500–1000 <30 90 ~$200/ch 0.3–1 m –

Table 10 
Methods, advantages, and disadvantages for addressing intermittency in HRES with hydrogen production.

S⋅No Reference Methods Advantages Disadvantages

1. [77] ANN, CNN, RNN It will handle complex data and improve 
accuracy

Using ANN for predicting renewable energy generation includes 
the challenge of intermittency inherent in RES, such as wind 
power, which can affect the accuracy of predictions and require 
sophisticated modelling techniques to account for variability over 
time

2. [93] Predicting solar irradiance: the 
ASHRAE clear sky model and NNs

Better accuracy, increased battery capacity Impact of solar energy intermittency

3. [95] AI-based optimisation methods, PSO, 
GA

Hybrid algorithms can improve efficacy and 
reliability by combining strengths of different 
techniques

Prioritise comprehensive investigations to develop efficient AI 
methods

4. [78] MILP Integrating RES and non-RES considering 
weather intermittency

AI/metaheuristic methods are more complex, requiring tuning of 
many parameters

5. [79] ANN, CEEMDAN–CNN–LSTM, 
computer vision

AI techniques enhance real-time monitoring, 
reduce false alarms, and improve safety 
measures in hydrogen-related applications

Challenges include data scarcity, model optimisation, and 
integration into existing systems

6. [94] ANN, supervised learning, 
unsupervised learning, RL

Improvements in energy management Difficulties in model predictions

Fig. 7. The techniques for harnessing solar energy to drive 
hydrogen production.
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also optimised critical operational variables, leading to a measurable 
increase in bio‑hydrogen yield. Furthermore, the combination of these 
advanced techniques successfully outperformed traditional approaches, 
providing a more robust framework for maximising hydrogen output in 
wastewater treatment applications. The amalgamation of Gaussian 
Process Regression (GPR) with GA optimisation, as exemplified by 
Shboul et al. [68], not only enhances power efficiency but also reduces 
the LCOE, highlighting the potential for ML optimisation to revolu-
tionise sustainable energy solutions. This study focuses on a robust 
techno-enviro-economic (3E) analysis of a hybrid PV-FC system for 
green hydrogen and electricity production, using MATLAB/Simulink® 
for performance evaluation. The integration of AI methods such as GPR 
and GA optimisation demonstrated a high degree of reliability, 
achieving an LCOE below $2/kWh for solar radiation levels above 250 
W/m2 and optimal fuel cell efficiency reaching 60 % at operational 
temperatures between 40 ◦C and 55 ◦C. Such advancements showcase 
the potential of hybrid energy systems in reducing carbon footprints 

while optimising cost-effectiveness and system performance for future 
energy landscapes. These studies collectively illustrate the diverse range 
of AI and ML techniques employed to enhance various aspects of 
hydrogen production, including process optimisation, predictive 
modelling, efficiency improvements, and cost-effectiveness. The inte-
gration of these techniques with established methods and frameworks 
has contributed to advancements in the hydrogen economy and the 
pursuit of sustainable energy solutions. Table 6 provides an overview of 
the techniques, main discoveries, and benefits associated with electrol-
ysis technology for hydrogen production. 

4.1.5 Hydrogen from Algae

Algae play a crucial role in the production of hydrogen through 
photo-biological H2O splitting, where water serves as the electron 
source and light energy drives the process. The intricate mechanism 
involves electron transfer from water to the electron transport chain in 
the thylakoid membrane, facilitated by plastoquinone oxidoreductase 
and Ferredoxin-by-Ferredoxin oxidoreductase. Ferredoxin [Fe] transfers 
electrons to hydrogenase, initiating the reaction that yields hydrogen, 
with oxygen produced as a by-product and protons (H+) released during 
the process. Guodao et al. [90], delves into the application of AI methods 
in GH2, emphasising their cost-effectiveness and efficiency. Despite 
these advancements, the study emphasises the substantial initial costs 
that could pose barriers to the widespread implementation of these 
technologies. Furthermore, the research illustrates how AI approaches 
can address various technical and environmental challenges, suggesting 
a promising direction for enhancing the sustainability and efficiency of 
GH2 production processes. Similarly, Sobri et al. [91] utilised ML al-
gorithms to enhance various aspects of hydrogen production processes, 
showcasing effectiveness while cautioning against model overfitting 
risks that may impact model generalisability and robustness. Further-
more, the research suggests integrating advanced techniques, such as 
regularisation or ensemble learning, to mitigate overfitting and enhance 
the adaptability of ML models in GH2 production. These studies 
collectively emphasise the potential of AI and ML in advancing RES- 
based hydrogen production, offering avenues for cost-effective and 
efficient solutions. However, they also underscore the importance of 
addressing obstacles like high initial investments and guarding against 
model overfitting to ensure seamless integration and scalability of these 
technologies. Fig. 12 visually represents the methodology for hydrogen 
production utilising algae as a sustainable resource, highlighting the 
innovative approach towards sustainable energy solutions.

Ongoing research efforts are focused on overcoming these limita-
tions by exploring innovative approaches, optimising resource alloca-
tion, and developing robust and generalisable models. By addressing 
these challenges, the integration of AI and ML techniques could pave the 

Fig. 8. Efficient green hydrogen production through wind energy integration. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 9. The procedure for utilising geothermal energy to produce 
hydrogen [48].
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way for more sustainable and economically viable hydrogen production 
systems, contributing to the global transition towards a cleaner and 
more renewable energy future. Table 7 provides an overview of the 
techniques, advantages, and disadvantages of algae hydrogen 
production. 

4.1.6 Hydrogen from the Ocean

The vast potential of the world’s oceans presents a promising frontier 
for sustainable hydrogen production, driving researchers to explore 
innovative methods for harnessing this abundant resource and shaping a 
cleaner, renewable energy landscape. One such avenue involves tapping 
into ocean wave energy for hydrogen generation. Mirshafiee et al. [72], 
introduced a data-driven approach to leverage the power of ocean 
waves, utilising advanced analytical techniques to optimise this 
renewable pathway. Their study compared AI-based prediction 
methods, the LSTM algorithm, and MLP to traditional numerical solu-
tions, demonstrating that the MLP algorithm outperformed LSTM in 
prediction accuracy, reducing the average squared error to 0.49. This 
comparison highlighted the efficiency, speed, and cost-effectiveness of 
the AI approach, emphasising the potential of combining simulation and 
AI to enhance energy management technologies and encourage invest-
ment in ocean-based renewable energy systems. Similarly, Sunil et al. 
[92], delved into extracting hydrogen directly from seawater, using CNN 
and RNN techniques, with improved efficiency, operation, and mainte-
nance. Their study demonstrated the effectiveness of these AI techniques 
in optimising the extraction process, highlighting potential improve-
ments in performance and reliability. By integrating AI with renewable 
energy systems, the research emphasises the importance of advanced 
computational methods in advancing sustainable energy solutions. 
Moreover, their findings underline the versatility of AI in addressing 
complex challenges in resource management, showcasing its potential to 
refine operational models and achieve higher yields with minimal 
environmental impact. This work provides valuable insights into the role 
of intelligent algorithms in driving innovation within the renewable 
energy sector, particularly for hydrogen production from seawater, 
paving the way for scalable and cost-effective clean energy technologies. 
Zhou [73] implemented advanced AI techniques, particularly MPC, to 
enhance the stability, reliability, and efficiency of ocean energy systems. 
Their work focused on optimising multi-energy synergies and managing 
energy storage solutions such as ocean hydrogen-based storage, aiming 
to overcome challenges like power intermittency and grid fluctuations. 

Fig. 10. Hydrogen manufacturing process using gasification of biomass.

Fig. 11. Sustainable hydrogen production from electrolysis.

Fig. 12. Innovative methodology for efficient hydrogen production utilising algae as a sustainable resource (Source: [70]).
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It also highlighted the advantages of AI-based controls in terms of 
reducing power losses and improving system robustness, while 
acknowledging the high computational demands and investment re-
quirements for deploying such sophisticated AI approaches effectively. 
Table 8 provides a comprehensive overview of the techniques, advan-
tages, and disadvantages associated with ocean-to‑hydrogen production 
pathways, as reported in the literature. The desalination process mirrors 
techniques commonly employed in arid regions like the Middle East and 
relies on high-pressure equipment. These advancements are particularly 
crucial in water-scarce regions like the Middle East, as illustrated in 
Fig. 13, showcasing the importance of optimising operations and 
incorporating AI with RES to improve the efficiency and sustainability of 
desalination processes in arid environments.

4.2. Sustainable hydrogen production, efficiency, and cost-effectiveness

Assessing the operational temperature ranges of various hydrogen 
production technologies provides crucial insights into their performance 
and applicability. The methods (AEL, PEM and SOEL) are used to vali-
date the concert of these systems, including temperature, cost, and ef-
ficiency. Fig. 14 provides a visual representation of the temperature 
ranges associated with three hydrogen production technologies by water 
electrolysis [8]. The light coral bars indicate the minimum operating 
temperatures, ranging from 50 ◦C to 60 ◦C for PEM and AEL, while SOEL 
operates at a higher minimum temperature of 500 ◦C. The red extensions 
denote the maximum temperature range, revealing significant varia-
tions between technologies reaching up to 1000 ◦C for SOEL, in contrast 
to the narrower ranges for AEL and PEM. This visualisation facilitates a 
clear comparison of the operational temperature diversity among these 
technologies, offering insights into their respective applications and 
potential advantages in hydrogen production.

Moving forward to 2030, Fig. 15 shows the efficiency analysis of 
hydrogen production. This bar chart offers a visual insight into the ef-
ficiency range anticipated for three distinct hydrogen production tech-
nologies in the year 2030. The chart reveals that the SOEC method is 
significantly more efficient than AEL and PEM. While AEL demonstrates 
a minimum efficiency of 73 %, PEM ranges from 70 % to 80 %. In 
contrast, SOEC exhibits an impressive efficiency range of 85 % to 100 %, 
making it a particularly promising technology for hydrogen production 
from electrolysis. Fig. 16 visually depicts the cost range analysis for 
hydrogen production technologies in 2030, featuring AEL, PEM and 
SOEC. Notably, SOEC exhibits a broader cost range of €570–730/kW− 1, 
indicating potential efficiency advantages compared to the respective 
ranges of €370–900/kW− 1 for AEL and €250–1700/kW− 1 for PEM [75].

Table 9 provides a comprehensive summary and assessment of 
several hydrogen production methods, focusing on temperature, pres-
sure, efficiency, cost-effectiveness, current density, and hydrogen pro-
duction rates. The data reveals that the SOE method stands out as the 
most efficient, boasting an impressive 90 % efficiency rate closely fol-
lows, with an efficiency range of 81–86 % for SOEL with pressure < 30 
bar. These technologies demonstrate remarkable potential for achieving 

high conversion rates in hydrogen production processes. When it comes 
to cost-effectiveness, the PEM method emerges as the frontrunner, with 
an estimated cost of approximately $750/kW. This positions PEM as an 
attractive option for stakeholders seeking a balance between efficiency 
and economic viability. In terms of current density, PEM again takes the 
lead, reaching 1–2 A/cm2. This high current density indicates PEM’s 
ability to handle larger electrical currents, potentially contributing to 
enhanced productivity in hydrogen production operations. Lastly, AEL 
method excels in hydrogen production, generating an impressive 760 
Nm3/h. This remarkable output underscores AEL’s capability to produce 
substantial quantities of hydrogen, making it a notable candidate for 
applications with high demand.

Fig. 13. Map of Western Australia and Middle East region (Source: [71]).

Fig. 14. Temperature analysis.

Fig. 15. Efficiency analysis.
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4.3. Optimising GH2 from hybrid and intermittent RES using AI and its 
applications

Hydrogen’s role as a clean energy carrier and industrial resource has 
led to its growing use across a variety of sectors. This role is further 
elevated by the integration of AI, which is driving significant improve-
ments in hydrogen-based systems. By leveraging advanced techniques 
like computer vision and sensor fusion, AI improves leak detection and 
enhances overall safety in hydrogen production, storage, and distribu-
tion [79]. AI is enhancing these manufacturing processes through pre-
dictive maintenance, quality control, and process optimisation. ML 
models analyse sensor data to predict issues in hydrogen systems or 
optimise its use in various steps, leading to improved efficiency and 
product quality. Hydrogen is also essential in the chemical and refining 
industries, particularly in petroleum refining where it is used for pro-
cesses such as hydrocracking and hydrotreating. ML can forecast 
renewable energy output and optimise hydrogen production and stor-
age, making it easier to integrate variable RES into the grid. AI is also 
enhancing safety and monitoring in hydrogen systems [94]. The com-
bination of hydrogen and AI technologies is also being applied in smart 
cities and intelligent transportation systems, depicted in Fig. 17. AI- 
powered platforms are helping optimise the deployment of hydrogen- 
powered public transport, manage charging infrastructure, and inte-
grate hydrogen systems with RES to create more resilient urban 

environments. So, as both hydrogen technologies and AI evolve, their 
potential to support decarbonisation and energy security will expand, 
leading to new innovations and future applications. The integration of 
hydrogen systems with AI is shaping a smarter, more efficient, and 
sustainable energy future.

The importance of efficient energy storage systems, especially for 
addressing the intermittency of RES, highlights hydrogen-based storage 
as a viable solution to overcome the limitations of battery storage sys-
tems. It reviews recent advancements in sizing and optimising HRES 
with hydrogen storage using various classical, soft computing, and 
hybrid metaheuristic optimisation techniques to improve sustainability 
and address challenges like intermittency and high costs [95]. In 
continuation to previous studies, an innovative Mixed-Integer Linear 
Programming (MILP) model is required that integrates RES and non- 
RES, accounting for weather intermittency, demand uncertainties, and 
green chemical processes like hydrogen production and methanation 
[78]. Table 10 presents a comparative analysis of various methods uti-
lised to tackle intermittency in hybrid renewable energy systems 
coupled with hydrogen production.

5. Discussion

The findings from this review highlight the growing interest and 
efforts in integrating AI techniques with RES for optimising GH2 pro-
duction. Several studies have explored the application of AI models, 
such as ANNs, SVMs, and DL approaches like LSTM networks, for fore-
casting and optimising various GH2 pathways from solar, wind, 
biomass, geothermal, and other RES. For solar-based hydrogen pro-
duction, techniques like ANNs (Su et al.[81]; [27]), LSTM networks, and 
SVR by Javaid et al. [28] have been employed. While these models can 
capture complex nonlinear relationships and provide accurate pre-
dictions, they often require large datasets and careful tuning for optimal 
performance [31]. Similarly, Elaziz et al. [32] optimised an AI method 
RVFL and MO algorithm to evaluate the performance of PVTC system 
and Senthilraja et al. [34] employed ANFIS with limited generalisation. 
Sareen et al. [35] found the CEEMDAN-BiDLSTM algorithm to predict 
GH2 production. Nikulins et al. [30] developed DL model FCNs and 
CNNs to capture complex patterns. Some studies have highlighted the 
need to consider multiple objectives beyond efficiency and costs, such as 
emissions or energy consumption [29]. The development of photo- 
electro chemical and PVE systems as promising avenues for cheaper 
GH2 from solar energy introduces new opportunities for AI-based opti-
misations. Adeli et al. [36] proposed an eco-friendly framework for 
hydrogen production using ANN and DL algorithms to refine key chal-
lenges. Haider et al. [37] and Cheng et al. [39] employed various ML 
models, including Prophet, SARIMAX, SVM, and FbProphet, to enhance 
forecast accuracy and address seasonal dependencies, while emphasis-
ing the importance of algorithm selection. Salari et al. [38] leveraged 
CNN, GRU, CatBoost, and MOGWO to improve system efficiency, noting 
the complexity of hyperparameter tuning and model selection. Addi-
tionally, Ateş [33] demonstrated that a CA-ANN hybrid method out-
performed ANN alone in predicting solar PV output, emphasising the 
need for integrating energy storage systems, such as hydrogen produc-
tion, to ensure uninterrupted energy supply. However, these technolo-
gies face challenges related to component costs, and durability, and the 
need for further optimisation to realise their potential cost advantages 
over traditional methods.

To produce hydrogen through wind, Zhang et al. [40] demonstrated 
the effectiveness of GDHS optimisation using AI, despite having limited 
comparison metrics. Similarly, Chen et al. [41] combined AI-enhanced 
MPC with PSO and BPANN to improve economic viability, though 
constrained by simulation environment limitations. Maleki and Askar-
zadeh [42] achieved the lowest annual cost using PSO in a PV/wind/FC 
system but highlighted the need for efficiency improvements in fuel cells 
and electrolysers for competitiveness. Additionally, Dudziak et al. [43] 
and Abisoye et al. [44] emphasised cleaner and cost-effective production 

Fig. 16. Cost analysis.

Fig. 17. Hydrogen’s multifaced applications in different sectors.
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through Bayesian network and AI-based metaheuristics, acknowledging 
challenges like high costs, quality data needs, and short-term planning. 
Zhang et al. [45] presented NSGA-II as an efficient optimisation method, 
while Dehshiri and Bahar Firoozabadi [46] and Javaid et al. [47] 
explored wind-based hydrogen production and the reliability of the 
Levenberg-Marquardt algorithm and LSTM models, noting significant 
costs and generalisation issues. For geothermal-based hydrogen pro-
duction, several approaches have demonstrated promising outcomes 
using AI and ML techniques. Mehrenjani et al. [88] achieved optimal 
hydrogen production rates with an ANN-GA hybrid but lacked an eco-
nomic model. Sangesaraki et al. [49] combined 4E analysis with ML and 
GA optimisation, reducing calculation time, although LINMAP was not 
fully explained. Similarly, Khosravi and Syri [50] and Balali et al. [51] 
utilised hybrid systems of MLP and GA, emphasising their suitability for 
remote areas and optimal hydrogen production, despite challenges 
related to cost and implementation. Xue et al. [52] applied multiple 
ANN models with a DE algorithm and FFNN, achieving high precision, 
albeit with training complexity. Yilmaz et al. [53] employed a real-time 
FPGA-based ANN model, which proved more accurate but came with 
higher costs and implementation complexity. Sohani et al. [54] explored 
SMOA as a promising approach but did not address different climatic 
regions.

For hydrogen production from biomass, Hannah et al. [89] devel-
oped a two-stage ANN model that provided accurate predictions while 
being time-efficient and cost-effective. Ozbas et al. [55] utilised ML 
models like LR, k-NN, SVMR, and DTR, achieving model accuracy in 
gasification experiments and higher heating values with reduced time 
and costs. Safarian et al. [56] emphasised the versatility of their ANN 
model, and Nieto et al. [80] combined SVM with an ABC optimiser to 
achieve high prediction accuracy. Zhao et al. [57] employed SCWG with 
ML models, focusing on optimising hydrogen reaction efficiency. Rezk 
et al. [58] used PKS and fuzzy logic models to obtain optimal values, 
increasing hydrogen and syngas production. Tahir et al. [59] applied ML 
with Bayesian Regularisation and SCG to produce clean energy effi-
ciently. Haq et al. [60] integrated ML with GA to enhance prediction 
accuracy and model performance, though it required careful tuning. For 
hydrogen production through fuel cell electrolysis, AI techniques have 
demonstrated significant potential in optimising and modelling various 
fuel cell technologies. Al-Othman et al. [62] showcased the effectiveness 
of diverse AI methods in optimising HRES, marking important progress 
in hydrogen economy development. Building on this foundation, 
Fayyazi et al. [61] integrated various AI and ML approaches, including 
fuzzy logic systems and GAs, demonstrating enhanced real-time adapt-
ability and reduced hydrogen consumption. The implementation of 
advanced optimisation frameworks has shown promising results. Feng 
et al. [63] proposed AI-MOO frameworks that significantly improved 
system efficiency. This work was complemented by Sousa et al. [66], 
who developed hybrid intelligent approaches focusing on performance 
validation and hydrogen consumption optimisation. Further advance-
ments in simulation methodologies were achieved by Peksen [19], who 
combined multi-physics simulation with ML to enhance fuel economy 
assessment. Recent innovations have focused on improving modelling 
accuracy and production efficiency. Fathy et al. [67] demonstrated the 
effectiveness of ANFIS modelling coupled with JO in increasing 
hydrogen production efficiency. Shboul et al. [68] explored the com-
bination of GPR with GA optimisation, achieving significant improve-
ments in power efficiency and cost reduction. These developments were 
further supported by Mansir et al. [64], who utilised AI, DL, and GAs to 
achieve excellent correlation in their predictions. The integration of NN- 
based approaches has shown promise in prediction accuracy. Zaferani 
et al. [65] employed MLP-ANN and ML techniques to demonstrate high 
accuracy in system predictions, while Casteleiro-Roca et al. [69] suc-
cessfully developed adaptive-predictive control systems using ANN and 
polynomial regression algorithms, enabling accurate prediction of 
hydrogen flow variations. These collective advancements show the 
significant potential of AI and ML techniques in advancing fuel cell 

technology for sustainable hydrogen production.
In the context of algae-based hydrogen production through photo-

biological H2O splitting, AI methods have been investigated for their 
cost-effectiveness and efficiency. However, the previous studies have 
also acknowledged potential barriers like high initial investment costs 
by Guodao et al. [90] and the risk of model overfitting, which could 
compromise generalisability and robustness [91]. The adoption of AI- 
driven approaches has significantly advanced the optimisation of 
renewable energy pathways, including ocean wave power and seawater- 
based hydrogen extraction. Mirshafiee et al. [72] introduced a data- 
driven approach to harness ocean wave energy through advanced 
analytical techniques. This methodology effectively optimised power 
extraction, enhancing the efficiency and viability of ocean waves as a 
RES. Similarly, Sunil et al. [92] explored the use of DL techniques, 
specifically CNN and RNN, to extract hydrogen directly from seawater. 
Their approach led to improved efficiency, streamlined operations, and 
reduced maintenance efforts, demonstrating the utility of ML models. 
The studies by Zhou [73] applied advanced AI techniques, particularly 
MPC, to enhance the stability and efficiency of ocean energy systems by 
optimising multi-energy synergies and managing ocean hydrogen stor-
age. The study highlighted the benefits of AI in reducing power losses 
and improving system robustness, while noting the high computational 
and financial costs involved. Additionally, Iqbal et al. [74] highlighted 
the integration of ML techniques, such as SVM, MLP-ANN, and GA- 
ANFIS, as key contributors to optimising electrochemical hydrogen 
production by improving catalyst design, reactor efficiency, and data- 
driven modelling.

Efficient energy storage systems are vital for mitigating the chal-
lenges posed by the intermittency of RES, and hydrogen-based storage 
stands out as a promising alternative to traditional battery solutions. 
Advancements in the sizing and optimisation of HRES incorporating 
hydrogen storage have shown potential in improving sustainability and 
addressing issues such as variability and high costs through classical, 
soft computing, and hybrid metaheuristic techniques Modu et al. [95]. 
The distinctions among electrolyser technologies, as examined by 
Domalanta et al. [75], reveal essential trade-offs in efficiency, operating 
temperature, and cost, emphasising the need for optimisation strategies. 
Hosseini and Wahid [76] further underscored the importance of un-
derstanding variations in efficiency, pressure, and cost to enhance sys-
tem performance and ensure practical application. The effective 
management of complex and variable data is critical in renewable en-
ergy forecasting. Rahman et al. [77] leveraged advanced models like 
ANN, CNN, and RNN to improve prediction accuracy, addressing the 
inherent challenges of resource intermittency. In a similar way, Daniel 
et al. [93] demonstrated the effectiveness of NNs combined with the 
ASHRAE clear sky model for better solar irradiance predictions, ulti-
mately enhancing the reliability and performance of energy systems. 
Building upon previous studies, an innovative MILP model has been 
proposed to integrate RES and non-RES, accounting for weather inter-
mittency, demand uncertainties, and green chemical processes like 
hydrogen production and methanation [78]. The assessment of 
hydrogen production technologies through AEL, PEM, and SOEL have 
been extensively analysed for their suitability in different applications, 
with findings highlighting variations in efficiency and cost-effectiveness 
under different operational conditions (Mengdi et al. [8]).

The integration of AI with hydrogen technologies is revolutionising 
various sectors, particularly in energy systems optimisation. In the en-
ergy sector, AI is proving transformative by deploying ML algorithms to 
forecast energy demand, enhance fuel cell performance, and effectively 
manage hydrogen production and distribution networks. Advanced 
techniques such as computer vision and sensor fusion are being utilised 
to enhance safety measures through improved leak detection in pro-
duction, storage, and distribution processes [79]. For instance, AI-driven 
platforms are optimising real-time operations at hydrogen fuelling sta-
tions by refining refuelling schedules and maintaining inventory levels 
to ensure seamless functioning with minimal downtime. AI enhances 
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these manufacturing processes through predictive maintenance, quality 
control, and process optimisation. ML models analyse sensor data to 
predict system issues and optimise hydrogen usage, resulting in 
improved efficiency and product quality. Hydrogen’s applications 
extend significantly into the chemical and refining industries. It is 
essential in petroleum refining processes such as hydrocracking and 
hydrotreating. AI’s capabilities in forecasting renewable energy output 
and optimising hydrogen production and storage are facilitating the 
integration of variable RES into the grid while enhancing safety and 
monitoring capabilities (Martinez et al.,[94]) AI is also driving innova-
tion in GH2 production through the development of more efficient 
electrolysis systems.

Despite the promising results, some common challenges emerge 
across various hydrogen production pathways. Data availability and 
quality remain critical factors, as many ML and DL models require large, 
high-quality datasets for accurate training and generalisation. Addi-
tionally, the economic viability of these AI-integrated systems is often 
influenced by factors like component costs, infrastructure requirements, 
and the potential impact of workforce changes or fossil fuel reliance. As 
the global focus on energy diversification intensifies, the integration of 
AI techniques with RES for optimised GH2 presents a promising 
pathway towards a sustainable energy future. These technologies are 
transforming various sectors, from energy systems to manufacturing 
processes. AI-driven platforms are optimising operations through 
advanced techniques like computer vision and sensor fusion for 
improved safety, while ML models are enhancing process efficiency and 
system performance across different applications. Furthermore, a 
comprehensive analysis of efficiency and cost trade-offs is crucial for 
selecting the optimal GH2 method. While processes like SR boast high 
efficiency but higher costs, methods like PO, AR, and gasification offer 
relatively lower costs but lower efficiencies. Stakeholders must carefully 
weigh these trade-offs to maximise the viability and potential of sus-
tainable hydrogen production.

6. Conclusion

The integration of AI techniques with RES presents a promising 
pathway towards optimising GH2 production processes. This compre-
hensive literature review has highlighted the significant potential of AI- 
optimisation methods and its applications, such as ML and DL, in 
enhancing the efficiency, cost-effectiveness, and overall viability of 
various hydrogen production methods. Previous studies have explored a 
wide range of AI techniques, including LR, RF, ANNs, LSTM, FFNN, MLP, 
SVR, SVMs, CNN, ANFIS, RL, DNN, Bayesian network and optimisation 
algorithms like GA, PSO, POA, MO-PSO, SMOA, ABC and NSGA-II. These 
approaches have demonstrated remarkable accuracy, adaptability, and 
optimisation capabilities across various RES, such as solar, wind, 
geothermal, and biomass. While significant progress has been made, 
several challenges persist, including data availability and quality, high 
initial costs, and the need for comprehensive optimisation frameworks 
that consider multiple objectives, such as emissions, energy consump-
tion, and environmental impact. The assessment of hydrogen production 
technologies through AEL, PEM, and SOEL has been extensively ana-
lysed for their suitability in different applications. Findings highlight 
variations in efficiency and cost-effectiveness under different opera-
tional conditions, emphasising the need to select appropriate technolo-
gies for specific applications.

Furthermore, findings from research in ocean-based hydrogen pro-
duction emphasise the importance of integrating multi-energy synergies 
and employing advanced AI-based control strategies to optimise system 
efficiency and stability, although high computational demands remain a 
barrier. Moreover, AI-driven advancements have significantly improved 
hydrogen production systems, enhancing their adoption across various 
sectors such as transportation, manufacturing, and power generation. 
Hydrogen fuel cells are being widely adopted in vehicles, heavy-duty 
transportation, and backup power solutions, providing a zero-emission 

alternative to traditional combustion engines. The combination of AI 
and hydrogen technologies is driving significant transformations across 
various industries. Through sophisticated AI methods such as computer 
vision and sensor fusion, operational safety and efficiency have 
improved, while ML implementations have enhanced system perfor-
mance and process optimisation in numerous applications. The combi-
nation of AI techniques with RES for optimised GH2 generation offers an 
avenue to a sustainable energy future as the world’s focus shifts to en-
ergy diversification. However, a comprehensive analysis of efficiency 
and cost trade-offs is crucial for selecting the optimal GH2 method, as 
processes like SR boast high efficiency but higher costs, while methods 
like PO, AR, and gasification offer relatively lower costs but lower 
efficiencies.

The following are recommendations and areas for future research 
that can be considered from this thorough literature review: 

• The development of comprehensive AI frameworks that integrate 
MOO techniques must be the main goal of future research. Such 
frameworks should aim to improve efficiency in addition to 
addressing emissions reduction, environmental effects, and eco-
nomic viability. Better understanding of how various AI models 
perform in many scenarios and how effectively they adapt to 
emerging RES technologies is needed for this purpose.

• The efficiency and cost-effectiveness of electrolysis technologies 
such as SOEL, PEM, and AEL vary depending on the application. 
Future studies should concentrate on lowering operating costs, 
increasing efficiency, and resolving issues related to water shortages 
to maximise these technologies by utilising AI-driven approaches.

• Further investigation and analysis are required to integrate AI with 
underutilised resources including tidal, hydropower, intermittency, 
algae, the ocean, and hybrid energy sources. The efficiency and 
economy of hydrogen production depend on AI’s capacity to opti-
mise electrolysis processes, real-time monitoring, and adaptive 
control strategies. Water scarcity must be addressed for water elec-
trolysis technologies to be used sustainably, particularly in desert 
areas.

• To enhance accuracy in forecasting, lower costs, and optimise multi- 
energy systems, future research should investigate innovative com-
binations of AI models with optimisation algorithms like GA, PSO, 
and deep reinforcement learning.

Overall, the integration of AI and RES for GH2 production is a rapidly 
evolving field with significant potential for enabling a transition towards 
a more sustainable and renewable energy landscape. Continued 
research, collaboration, and investment in this domain are crucial for 
overcoming existing challenges and unlocking the full potential of AI- 
enabled GH2 production.
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[31] Mert İlker. Agnostic deep neural network approach to the estimation of hydrogen 
production for solar-powered systems. Int J Hydrog Energy 2021;46(9):6272–85. 
ISSN 0360-3199,, https://doi.org/10.1016/j.ijhydene.2020.11.161.

[32] Elaziz Mohamed Abd, Senthilraja S, Zayed Mohamed E, Elsheikh Ammar H, 
Mostafa Reham R, Songfeng Lu. A new random vector functional link integrated 
with mayfly optimization algorithm for performance prediction of solar 
photovoltaic thermal collector combined with electrolytic hydrogen production 
system. Appl Therm Eng 2021;193:117055. ISSN 1359-4311, https://doi.org/10 
.1016/j.applthermaleng.2021.117055.
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