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Abstract: Ambient air pollution is the most important environmental factor impacting
human health. Urban landscapes present unique air quality challenges, which are com-
pounded by climate change adaptation challenges, as air pollutants can also be affected by
the urban heat island effect, amplifying the deleterious effects on health. Nature-based solu-
tions have shown potential for alleviating environmental stressors, including air pollution
and heat wave abatement. However, such solutions must be designed in order to maximize
mitigation and not inadvertently increase pollutant exposure. This study aims to demon-
strate potential applications of nature-based solutions in urban environments for climate
stressors and air pollution mitigation by analyzing two distinct scenarios with and without
green infrastructure. Utilizing low-cost sensors, we examine the relationship between green
infrastructure and a series of environmental parameters. While previous studies have
investigated green infrastructure and air quality mitigation, our study employs low-cost
sensors in tropical urban environments. Through this novel approach, we are able to obtain
highly localized data that demonstrates this mitigating relationship. In this study, as a part
of the NERC-FAPESP-funded GreenCities project, four low-cost sensors were validated
through laboratory testing and then deployed in two locations in São Paulo, Brazil: one
large, heavily forested park (CIENTEC) and one small park surrounded by densely built
areas (FSP). At each site, one sensor was located in a vegetated area (Park sensor) and one
near the roadside (Road sensor). The locations selected allow for a comparison of built
versus green and blue areas. Lidar data were used to characterize the profile of each site
based on surrounding vegetation and building area. Distance and class of the closest road-
ways were also measured for each sensor location. These profiles are analyzed against the
data obtained through the low-cost sensors, considering both meteorological (temperature,
humidity and pressure) and particulate matter (PM1, PM2.5 and PM10) parameters. Particu-
late matter concentrations were lower for the sensors located within the forest site. At both
sites, the road sensors showed higher concentrations during the daytime period. These
results further reinforce the capabilities of green–blue–gray infrastructure (GBGI) tools to
reduce exposure to air pollution and climate stressors, while also showing the importance
of their design to ensure maximum benefits. The findings can inform decision-makers in
designing more resilient cities, especially in low-and middle-income settings.
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1. Introduction
Ambient air pollution represents a critical public health issue throughout the world,

having surpassed other factors in recent decades to become the main environmental ex-
posure affecting human health [1]. Both air pollution and heat wave incidence have been
associated with increases in all-cause mortality [2,3]. Even at low concentrations, exposure
to air pollutants such as particulate matter (PM) has been linked to an increased risk of
respiratory and cardiovascular diseases [4]. Increased epidemiological evidence for these
relationships has resulted in a gradual reduction in recommended air pollutant levels from
groups such as the World Health Organization [5]. Exposure to air pollution is especially
critical in urban landscapes in low-and middle-income countries, where both population
and emission sources tend to be more concentrated [6].

Although air pollution has become the primary environmental determinant of pre-
mature death, it should be noted that much progress has been made to curb air quality
degradation. Especially in urban areas, efforts to limit concentrations of primary air
pollutants have, in many cases, made significant strides [7,8]. Conversely, communities
across the globe face increasing and uncertain threats from climate change, with vulner-
able populations—especially those in the global south—facing disproportionate effects.
Increased incidence and intensity of heat waves are particularly concerning for cities that
already experience the urban heat island effect [9]. Research on emerging pollutants and
better estimations of pollutant concentrations at high resolutions has also improved our
understanding of the complexity of air pollution over this period. This development has
coincided with the emergence of new, low-cost solutions for monitoring air pollutants,
enabling levels of spatial and temporal resolution that were not previously possible [10].
These technologies also help us to better understand exposure to air pollution in near real-
time and are especially important in poor and middle-income countries where monitoring
stations are scarce.

Despite the challenges, city planners and policy-makers have an opportunity to
reshape cities in the wake of a global pandemic [11]. Green–blue–gray infrastructure
(GBGI) refers to natural features such as parks, wetlands or engineered greening that
produce environmental benefits such as cooling, water management and leisure. Nature-
based solutions such as GBGIs have emerged as valuable tools for mitigating exposure to
air pollution [12], in addition to a multitude of other environmental benefits to commu-
nities [13,14]. Green structures such as tree rows act as a physical barrier to PM and also
retain particles through deposition on leaf surfaces. In the case of temperature regula-
tion, increasing vegetation coverage reduces temperatures while also working as natural
sponges that provide protection against flooding. However, not all green infrastructure
solutions offer similar benefits, and in some cases, factors such as decreased pollutant
dispersion [15,16] and the potential of vegetation emission to form ozone [17] and fine
particles [18] may offset or even surpass gains. Due to this range of possible outcomes, it
is important to analyze exposure settings to understand the benefits GBGI interventions
can offer. In this context, the present study explores the influence of green infrastructure
in a tropical urban setting by examining air pollution and climate data collected using
low-cost sensors at two locations in São Paulo, Brazil. The goal of this research is to
demonstrate whether these features present any air quality or climate-mitigating benefits
and the extent to which this can be measured.
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This work aims to understand the intersection of air pollution and climate stressor
mitigation via vegetation in an urban landscape. We employ low-cost sensors to compare
roadside conditions to those within a park at two locations to estimate the potential
mitigating impact of the vegetation. Low-cost sensors have not been deployed previously
in São Paulo, making the data used here novel. The green infrastructure investigated here
existed prior to the study—there was no intervention to introduce the GBGIs, offering a
look at the real-world functionality of these tools.

2. Materials and Methods
After performance validation (see Section 2.2), the low-cost sensors were installed at

two locations in Sao Paulo. The locations were selected due to their unique characteristics,
containing a combination of green and built areas. Two sensors were installed at both sites,
with one sensor being located in the middle of the vegetated area (hereafter “park” sensors)
and the other being located adjacent to one of the bordering roads (hereafter “roadside”
sensors). The data from these sensors were analyzed to assess the mitigating impact of the
vegetation at each site. The RStudio package openair was used for quantitative analysis of
the sensor data and generating graphs (https://cran.r-project.org/web/packages/openair/
index.html (accessed on 23 September 2024)); QGIS was used for spatial analysis and
mapping (https://qgis.org/ (accessed on 23 September 2024)); CloudCompare was used to
analyze lidar data (https://www.cloudcompare.org/ (accessed on 23 September 2024)).
From the cleaned and compiled data, the variation in the hourly average of all variables
was calculated.

2.1. Site Description

São Paulo is a mega-city located in southeastern Brazil, with a population of 11.4 mil-
lion (21 million when considering the metropolitan region composed of 39 municipalities).
The city has a large and constantly evolving vehicle fleet, which represents a primary emis-
sion source affecting air quality in the city [19]. São Paulo is also subject to the contribution
of regional area sources such as biomass burning, which has long been identified as a main
emission source in Brazil [20]. While the city is composed primarily of densely built areas,
vegetation is more dominant in some regions of the city compared to others [21]. In this
context, urban parks can offer protection from climate stressors such as heat waves [22].
However, the characteristics of the park, such as the quantity and structure of vegetation,
as well as how vegetation is orientated, determine the range of both thermal protection and
PM reduction benefits it provides [23,24]. São Paulo has a humid subtropical climate, with
little seasonal variation in the vegetation’s composition; thus, there is no need for a distinct
analysis across seasons.

The selection of sites where the sensors were installed, therefore, focused on two dis-
tinct urban park formats: a small green island vs. an extensive green area. Figure 1 shows
the location and some characteristics of the two sites using lidar data that have been
classified as vegetation and built area. The smaller park is part of the campus of the Uni-
versity of Sao Paulo’s School of Public Health (Faculdade de Saúde Pública—hereafter
FSP). The FSP site covers an area of approximately 3 hectares and is positioned between
two major arterial roads on the north and southeastern sides. The western area of the
park contains the main university buildings, representing the tallest structures in the
surrounding area. While cars are permitted within the park area, vehicle traffic is ex-
tremely limited, as onsite parking is reserved for authorized staff only. The larger park
is the University of Sao Paulo’s Science and Technology Park (hereafter CIENTEC). The
CIENTEC park is located within the Fontes do Ipiranga State Park, which covers an
area of approximately 470 hectares. An arterial road runs through the park, connecting

https://cran.r-project.org/web/packages/openair/index.html
https://cran.r-project.org/web/packages/openair/index.html
https://qgis.org/
https://www.cloudcompare.org/
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neighborhoods to the central region of the city. At both sites, a mix of vegetation lines
the nearest roads at each site.
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ipal Government of São Paulo through the geosampa (https://geosampa.pre-
feitura.sp.gov.br/PaginasPublicas/_SBC.aspx (accessed on 23 September 2024)), a web 
platform that consolidates a wide variety of spatialized data for the city. 

 

Figure 2. Summary of characteristics of Park (green) and Roadside (brown) sensors for FSP (solid) 
and CIENTEC (gridded) sites. 

It should be noted that while the closest roads to both sites are classified as arterial, 
the FSP site experiences higher vehicle traffic. The two nearest roads at FSP meet to form 

Figure 1. Study site location within Brazil (A) and presence of roadways, vegetation and built area at
the CIENTEC (B,C) and FSP (D,E) sites.

The site characteristics, specifically vegetation area, tree crown height, building area,
building height and distance to the nearest road, were calculated for a 50 m radius around
each site (see Figure 2). The vegetation and building area can be understood as proxies
for the presence (or absence) of GBGI features, while their respective heights are known
to influence particle dispersion. Road distance represents the presence of local mobile
emission sources. The lidar and road network data are made publicly available by the
Municipal Government of São Paulo through the geosampa (https://geosampa.prefeitura.
sp.gov.br/PaginasPublicas/_SBC.aspx (accessed on 23 September 2024)), a web platform
that consolidates a wide variety of spatialized data for the city.
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It should be noted that while the closest roads to both sites are classified as arterial,
the FSP site experiences higher vehicle traffic. The two nearest roads at FSP meet to form a
major intersection that experiences some traffic congestion throughout the day, which itself
increases local emissions [25].

2.2. Instrumentation

The sensors used in this study are PurpleAir Flex Air Quality Monitors, which use
a pair of Plantower PMS-6003 laser particle counters (Plantower Technology, Jiangxi,
China) and one BME688 Bosch Sensortec instrument (Robert Bosch GmbH, Baden-
Württemberg, Germany) for meteorological readings (temperature, humidity, and pres-
sure). Unless modified otherwise, the sensor collects data at 2 min intervals. The
PurpleAir sensors have been widely used in previous studies [26,27]; however, due
to variations in their performance in the field, extensive quality assurance is required.
Prior to installation, the performance of the sensors deployed in this study was val-
idated via colocation within a chamber at the Global Centre for Clean Air Research
(GCARE) laboratory. The collocation experiments took place during the period from
22 to 24 May 2023. A variety of scenarios were run, simulating a range of temperature,
humidity and particulate matter concentration settings. The sensors showed adequate
performance for particulate matter and climate readings; therefore, no calibration of the
sensor readings was performed in this study. Results from the validation experiments
can be found in the Supplementary Materials. The PurpleAir sensors use laser particle
counters and convert these readings into PM concentrations for PM1, PM2.5 and PM10.
This conversion process is proprietary, but the final readings generated by the sensors
are available for two correction factors: CF = 1 and CF = atm. The CF = 1 correction
factor is recommended for indoor monitoring (factory conditions), whereas the CF = atm
version is recommended for outdoor uses (atmospheric conditions). The CF = atm data
were used for the comparison with the reference instrument.

2.3. Data Collection

The sensors at FSP were installed in June 2023. At CIENTEC, the sensors were installed
in July (roadside) and September (park) 2023. The sensors remained in place throughout
the period analyzed; however, there were some disruptions that created data gaps. While
the sensors transmit data via Wi-Fi, data were obtained from the backup SD cards that log
the readings continuously, thus reducing missingness. The final raw data considered in
this study were collected in May 2024. The final period considered for analysis runs from
30 June 2023 to 4 April 2024.

2.4. Quality Assurance and Control

We applied several data cleaning steps to remove possibly non-representative readings
and ensure agreement between sensor channels. Firstly, we applied a Limit of Detection
(LOD) of 1.5 µg/m3. This is comparable with, but slightly more restrictive than, the LOD
values derived by Wallace et al., 2021 [28]. We also removed readings above 95% humidity.
No readings were outside the sensor’s functional temperature range (−17 to 54 ◦C). Next, to
calculate hourly averages, we set a minimum threshold of 12 readings. To ensure agreement
between the two laser particle counters in each sensor (referred to as the A and B channels),
we applied the criteria used by Mathieu-Campbell et al., 2024 [29]. This process establishes
two rules for eliminating readings, depending on the reading’s concentration (above or
below 25 µg/m3):
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When PM2.5 < 25 µg/m3, the total difference must be less than 5 µg/m3 and the
percent difference must be less than 20%.

When PM2.5 > 25 µg/m3, only the percentage difference must be less than 20%.
Lastly, for each pair of sensors, we eliminated all resulting hourly averages that were

not collected simultaneously by both sensors (park and roadside). Table 1 summarizes the
data cleaning sequence and the number of readings removed during each step.

Table 1. Overview of data cleaning criteria and number of readings removed at each step.

Criteria Number of Readings Removed (Percentage of Total)

Initial total: 765788 2-min readings

Detection limit PM2.5 > 1.5 µg/m3 75,695 (10%)

Relative humidity > 95% 120 (0.02%)

Total hourly readings: 24718

At least 12 2-min readings to form hourly averages 4178 (17%)

A-B channel criteria 1029 (4%)

Simultaneous readings 3635 (15%)
This process resulted in 7853 hourly average readings (3489 for CIENTEC and 4364 for FSP).

Background Analysis

We removed the background concentration from the hourly average readings for each
sensor, allowing us to better understand the influence of local emission sources. As in
Nogueira et al., 2021, we considered the overnight period from midnight to 3 a.m. to
represent the background, as this period corresponds to limited vehicle traffic and stable
atmospheric conditions [30]. From this selection, we calculated the 10th percentile (p10)
and defined the resulting values as the background concentrations. Values below the
background concentration were removed, and this value was subtracted from all remaining
hourly readings. As a result, we obtained a final cleaned dataset with the background
concentration removed.

2.5. Analysis

We considered the percentage difference between the roadside and park sensors at
each site to represent the degree of possible mitigation (road value − park value = delta).
We compared the degree of mitigation for the three PM fractions as well as for the climate
variables temperature, humidity and pressure. The delta values were averaged by hour of
day and separated into three periods. Due to the distinct pattern of variation at FSP and
CIENTEC, we defined these periods differently for each site. Table 2 presents the periods
used for each site.

Table 2. Separation of period of day for each site.

Period of Day FSP CIENTEC

Overnight 00 h to 09 h 00 h to 07 h
Daytime 10 h to 18 h 08 h to 15 h
Evening 19 h to 23 h 16 h to 23 h

Wind speed and direction data were obtained from Brazil’s National Institute of Mete-
orology (INMET), which provides wind direction at 22.5-degree intervals. We combined
the hourly data from the closest INMET station with the hourly averaged sensor data.
In the case of FSP, the SE-CGE–SP site, located approximately 1.5 km away, was used.
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For CIENTEC, the IPIRANGA station, located 4.5 km away, was used. The results of the
mitigation analysis were thus separated by time of day and wind direction.

To understand the interaction between the weather data and the mitigation values, we
ran multiple linear regression (MLR) models, using a stepwise algorithm to identify the
models that best explain the variation in mitigation (∆PM). This was carried out with both
the final compiled data (hourly averages) and with a small dataset of only the hour-by-hour
averages for each variable.

Lastly, to better understand the composition of the roadside vegetation barrier at
each site, we isolated the 3D segment of the barrier and calculated the point cloud density
using CloudCompare.

3. Results and Discussion
3.1. Comparison of Background Concentrations

The background analysis produced lower concentrations for the CIENTEC site, reflect-
ing the lower overall averages for this site. Surprisingly, the background concentrations
were also higher for the park sensors at each site. As mentioned, this could be a result of
the vegetated areas having more biogenic precursors and better conditions for particle for-
mation due to the increased humidity [17,18]. Table 3 shows a summary of the background
concentrations and resulting overall averages for the sensors at CIENTEC and FSP.

Table 3. Background and average concentrations (in µg/m3) for sensors at the CIENTEC and
FSP sites.

CIENTEC FSP

Park Roadside Park Roadside

Back Avg Back Avg Back Avg Back Avg

PM1 3.8 10.9 3.6 10.3 5.2 12.8 4.7 13.6

PM2.5 5.1 15.0 5.0 13.8 6.8 18.1 6.0 19.0

PM10 6.5 17.7 6.5 16.3 8.0 21.8 7.1 22.7

For PM2.5, the final averages are 3.1 and 5.3 µg/m3 higher at the FSP Park and Roadside
sensors, respectively.

Comparing the meteorological variables, the two sites show mixed results, as seen in
Table 4. Overall, CIENTEC showed higher temperatures in the park and FSP showed higher
road temperatures. This finding is surprising, given that CIENTEC is surrounded by such
an expansive forested area. This could be explained by the fact that the CIENTEC sensor is
situated higher on its hosting structure and is, therefore, largely exposed to direct sunlight
at certain periods throughout the day. The higher humidity at the CIENTEC site shows the
effect of the larger forest surrounding this site compared to FSP. The lower background and
average PM values indicate more robust benefits for this expansive urban park compared
to the small patch of vegetation at the FSP site. There is a nominal difference between the
average pressure values for the sites; the difference could reflect the relative heights of
each sensor.
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Table 4. Average, median and standard deviation of meteorological parameters for each site.

CIENTEC FSP

Park Roadside Park Roadside

Avg Med SD Avg Med SD Avg Med SD Avg Med SD

Temperature (◦C) 28.6 27.7 4.8 29.1 28.2 4.1 27.6 26.5 5.6 30.0 29.2 5.8

Humidity (%) 54.1 57.5 11.6 52.8 55.7 9.2 50.5 54.3 12.8 44.1 46.3 11.6

Pressure (mbar) 924.1 924.0 2.8 926.2 926.1 2.8 923.6 923.3 3.8 923.7 923.3 3.8

Wind Direction (◦) 145.8 112.0 102.3 145.8 112.0 102.3 144.9 112.0 108.5 144.9 112.0 108.5

Wind Speed (m/s) 0.2 0.0 0.6 0.2 0.0 0.6 1.1 0.7 1.2 1.1 0.7 1.2

Temporal Variation

Figure 3 shows the hourly variation in PM concentrations. Both sites display a typical
diurnal trend that is likely influenced by local traffic frequency [31].

Int. J. Environ. Res. Public Health 2025, 22, x  8 of 14 
 

 

Temporal Variation 

Figure 3 shows the hourly variation in PM concentrations. Both sites display a typical 
diurnal trend that is likely influenced by local traffic frequency [31]. 

 

Figure 3. Hourly variations in concentrations of PM1 (top), PM 2.5 (middle) and PM10 (bottom) for 
the FSP (left) and CIENTEC (right) sites. 

Concentrations are generally higher during the overnight period, likely owing to less 
favorable dispersion conditions during this period, namely the lower mixing height 
[32,33]. After the morning peak, concentrations steadily decrease until reaching their av-
erage daily minimum—this transition occurs earlier at the FSP site, which led us to differ-
ent period of day definitions for the two sites. 

3.2. Delta Calculation/Mitigation Analysis 

Table 5 shows the results of the mitigation (delta) analysis. PM concentrations are 
consistently lower at the FSP park sensor (positive ΔPM), whereas the positive delta value 
for PM is only seen during the daytime period for CIENTEC. The delta values for PM also 
appear to increase with size fraction, which may reflect (i) higher fallout of heavier parti-
cles over the distance from the road and (ii) more effective barrier and deposition protec-
tion from vegetation for these size fractions. 

Table 5. Average difference between road and park sensors at FSP and CIENTEC per period of day. 

 FSP CIENTEC 
 PM1 PM2.5 PM10 PM1 PM2.5 PM10 

Overnight 0.47 (10%) 0.50 (11%) 0.50 (11%)  −1.2 (−15%)  −2.2 (−20%)  −2.7 (−21%) 
Daytime 1.12 (22%) 1.7 (26%) 1.7 (27%) 0.42 (11%) 0.33 (10%) 0.66 (12%) 
Evening 0.59 (13%) 0.65 (13%) 0.65 (13%)  −0.86 (−10%)  −1.8 (−14%)  −2.1 (−15%) 

 Temp Hum Press Temp Hum Press 
Overnight 2.9 (10%)  −7.5 (−16%) 0.04 (0%) 0.72 (3%)  −2.3 (−4%) 2.1 (0%) 

Figure 3. Hourly variations in concentrations of PM1 (top), PM 2.5 (middle) and PM10 (bottom) for
the FSP (left) and CIENTEC (right) sites.

Concentrations are generally higher during the overnight period, likely owing to less
favorable dispersion conditions during this period, namely the lower mixing height [32,33].
After the morning peak, concentrations steadily decrease until reaching their average daily
minimum—this transition occurs earlier at the FSP site, which led us to different period of
day definitions for the two sites.

3.2. Delta Calculation/Mitigation Analysis

Table 5 shows the results of the mitigation (delta) analysis. PM concentrations are
consistently lower at the FSP park sensor (positive ∆PM), whereas the positive delta value
for PM is only seen during the daytime period for CIENTEC. The delta values for PM also



Int. J. Environ. Res. Public Health 2025, 22, 306 9 of 13

appear to increase with size fraction, which may reflect (i) higher fallout of heavier particles
over the distance from the road and (ii) more effective barrier and deposition protection
from vegetation for these size fractions.

Table 5. Average difference between road and park sensors at FSP and CIENTEC per period of day.

FSP CIENTEC

PM1 PM2.5 PM10 PM1 PM2.5 PM10

Overnight 0.47 (10%) 0.50 (11%) 0.50 (11%) −1.2 (−15%) −2.2 (−20%) −2.7 (−21%)

Daytime 1.12 (22%) 1.7 (26%) 1.7 (27%) 0.42 (11%) 0.33 (10%) 0.66 (12%)

Evening 0.59 (13%) 0.65 (13%) 0.65 (13%) −0.86 (−10%) −1.8 (−14%) −2.1 (−15%)

Temp Hum Press Temp Hum Press

Overnight 2.9 (10%) −7.5 (−16%) 0.04 (0%) 0.72 (3%) −2.3 (−4%) 2.1 (0%)

Daytime 1.8 (6%) −4.7 (−11%) 0.06 (0%) −0.3 (0%) 0.9 (3%) 2.2 (0%)

Evening 2.6 (10%) −7.1 (−14%) 0.03 (0%) 0.96 (4%) −2.4 (−4%) 2.2 (0%)

The temporal variation in ∆PM is provided in Table S1. The delta value varies through-
out the day at each site. At both sites, the difference tends towards zero or negative range
at night, whereas during the daytime, the value is generally positive (meaning lower con-
centrations at the park sensor). The transitions from negative to positive values happen at
different times, occurring slightly earlier at the CIENTEC site (8 a.m. and 3 p.m.) compared
to the FSP site (10 a.m. and 6 p.m.). It is important to consider that the daytime period
corresponds to a higher effect of local emission sources and is the period we would expect
exposure to occur. In this sense, we can say that at both sites, the vegetation appears to
provide daytime protection to potentially exposed populations.

The delta results for the weather data indicate that the FSP site protects against high
temperatures and low humidity, while this is not seen at CIENTEC during the day. The
pressure levels vary nominally at both sites.

The lower PM concentrations at the CIENTEC site compared to the FSP site indicate
that the much larger forested area acts as a mitigating buffer against PM. This effect is likely
magnified by the absence of local emissions sources compared to the FSP site. The lower
temperature and higher humidity for CIENTEC also highlight how the large forested area
acts as a buffer against climate stressors.

Vegetation Barrier Porosity

As mentioned previously, the CIENTEC park sensor is situated in a more exposed
area compared to the FSP park sensor, which could help explain the less effective PM and
climate protection. Another possible explanation for this could be the structure of the
roadside vegetation barrier for this site, which appears to be more porous. Figure 4 shows
3D representations of the vegetation barriers that are road-adjacent, as well as the point
density distribution for these segments.

Whereas the nearby road at CIENTEC is roughly NW to SE, the FSP site has two
adjacent roads on its north and south sides, so we considered all vegetation within this
triangle as part of the vegetation barrier. The 3D rendering of the lidar data appears to
show a more porous barrier at the CIENTEC site, with visible gaps from the top–down
and side views. We can see that the peak of the density curve occurs at a higher value for
the FSP site, indicating that this barrier is less porous compared to the CIENTEC barrier.
This could lead to a less effective barrier and may explain the discrepancy in ∆PM values
between the sites.
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3.3. Effect of Wind Speed and Direction

Figure 5 shows the distribution of the ∆PM2.5 by percentile and wind direction, reveal-
ing the wind direction at which the ∆PM2.5 values are maximized for each site.
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Figure 5. Percentile rose distribution of the difference between road and park PM2.5 concentrations at
FSP (left) and CIENTEC (right) sites.

Overall, westerly winds appear to improve the PM2.5 mitigation at both sites, specif-
ically northwesterly winds for FSP and southwesterly for CIENTEC. This represents a
roughly crosswind scenario (refer to Figure 1) at both sites and, thus, could reflect the im-
pact of vehicle emissions on the roadside sensor concentrations. Averaging the percentage
of ∆PM2.5 by wind direction produces similar results, with the highest values occurring
between 225 and 270 (20–32% reduction for FSP and 5–9% reduction for CIENTEC) (see
Table S2).



Int. J. Environ. Res. Public Health 2025, 22, 306 11 of 13

3.4. Combined Effect of Variables

The stepwise regression modeling aims to determine which variables have the
strongest influence on ∆PM2.5. This process produced low R2 values when consider-
ing the full datasets for each site. However, when we reduced the data to hour-by-hour
averages for each variable, the R2 increased significantly. Table 6 shows the variables and
their respective coefficients for each site.

Table 6. Variables and their respective coefficients of stepwise-derived equations (T = temperature;
H = humidity; P = pressure; WD = wind direction; WS = wind speed).

Variables and Coefficients
R2

Park Sensor Roadside Sensor Wind Data

FSP
Full Data T 2.75 H –0.32 P 0.26 T –2.80 H NA P NA WD 0.01 WS 4.05 0.08

Hour-by-hour T 14.30 H 3.11 P 172.90 T –5.67 H NA P –171.40 WD 0.22 WS NA 0.93

CIENTEC
Full Data T –2.37 H –2.85 P –9.30 T 4.21 H 2.65 P 9.49 WD 0.02 WS –2.32 0.26

Hour-by-hour T NA H –1.35 P NA T NA H NA P 2.41 WD 0.24 WS –26.88 0.94

The ∆PM2.5 is influenced by different factors at each site. Whereas windspeed pro-
motes mitigation at the FSP site, it appears to have the opposite effect at the CIENTEC site;
this also applies to temperature and pressure.

Overall, the results show that as a large urban forest, the CIENTEC site provides
robust ecological benefits such as increased humidity and lower background and average
PM concentrations. Additionally, the vegetation at both sites appears to reduce daytime PM
concentrations (although at different times of day); overall, these benefits are more limited
at the CIENTEC site, which may be due to a differing roadside vegetation barrier structure.
These benefits are augmented by favorable wind conditions. Other climate factors appear
to affect the mitigation differently at each site. This, in turn, has positive impacts on public
health, as epidemiological and toxicological studies have shown associations between
both chronic and long-term exposure to PM and a plethora of adverse health effects,
including airway damage and cardiopulmonary disorders [34]. Unfavorable thermal
comfort conditions have also been associated with mortality for circulatory and respiratory
diseases, as extreme heat can lead to vasodilation to dissipate heat and maintain thermal
equilibrium, potentially leading to acute cardiovascular events [35].

4. Conclusions
As we enter a new era of uncertainty concerning the local impacts of climate change,

it is increasingly important for urban adaptation policies to be rooted in experimental
evidence. Nature-based solutions such as GBGIs offer the possibility of various co-benefits
such as mitigation, adaptation and reduced exposure to air pollution. GBGIs are especially
important tools in the context of climate and air pollution mitigation policies, aiming to
bring climate justice to vulnerable populations. However, the interaction between these can
produce mixed results and needs to be better understood. The results of this study reinforce
the important role that green infrastructure can play in mitigating environmental and
climate impacts. It also shows how different site characteristics can affect the magnitude
of this mitigating effect. This information should be taken into account when designing
green–blue infrastructure so as to maximize benefits and reduce population exposure. This
study reinforces that low-cost sensors show promising results and large potential use for
cities in low-income settings where official monitoring stations are scarce or non-existent.
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